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Abstract

The paper proves, by construction, existence of Markovian equilibria in dynamic
spatial legislative bargaining model. Players bargain in infinite horizon over policy in
one- or multi-dimensional policy space. In each period, sequence of proposal-making
and majority voting between proposal of randomly selected player and the status-
quo, the policy last enacted, determines policy outcome that carries over as the
status-quo in the following period; status-quo is endogenous. Proposer recognition
probabilities are constant and discount factors are homogeneous. The construction
relies on simple strategies determined by strategic bliss points produced by algo-
rithm we construct. Strategic bliss point is policy proposed by a player with ample
bargaining power, it maximizes her dynamic utility. Relative to a bliss point, static
utility ideal, strategic bliss point is moderate policy. Moderation is strategic and
germane to the dynamic environment, players moderate in order to constraint future
policies of their opponents. Moderation is strategic substitute, when player’s oppo-
nents do moderate she does not, when they do not moderate she does. We prove
that the simple strategies along with the algorithm deliver Stationary Markov Per-
fect equilibrium, proving its existence, in a large class of symmetric games with more
than three players and, possibly with slight adjustment, in any three-player game.
Because the algorithm constructs all equilibria in simple strategies, we are able to
provide their general characterization and we show that they are generically unique.
Finally, we analyse how the extent of moderation changes with model parameters
and discuss dynamics of policies generated by the equilibrium play.
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1 Introduction

Dynamic legislative bargaining models reflect continuous nature of many

real world policies and spending programs: policies persist and evolve in

time, are determined repeatedly and any change is made under the shadow

of the extant legislation that is revised and becomes the new status-quo.

The models build on static non-cooperative models of legislative bargaining

in the spirit of Baron and Ferejohn (1989) in using sequential protocol of

proposal-making and voting in either distributive, bargaining over allocation

of benefits, or spatial, bargaining over policies, setting.1 The static models

assume bargaining terminates upon reaching an agreement. The dynamic

models instead embed the static decision-making protocol as a stage game in

an infinite horizon repeated interaction. In each stage game the status-quo

is the policy last enacted, making the current decision future status-quo and

inducing dynamic, not just repeated, strategic situation.

Starting with Baron (1996), the dynamic legislative bargaining literature

has been steadily growing (see next section for an overview). For the dy-

namic version of the distributive model Kalandrakis (2004b) was the first to

characterize its Markov equilibrium. In the absence of applicable existence

theorems for Markovian equilibria his characterization constitutes an exis-

tence proof as well. In the continuing absence of the existence theorems,2

and due to lack of similar characterization for the spatial model,3 existence

and properties of Markov equilibria in the dynamic spatial model remain

unknown.

In this paper we prove, using constructive arguments, existence of Markov

equilibria in a dynamic spatial legislative bargaining model. Group of leg-

islators repeatedly sets policy in one- or multi-dimensional policy space.

Preferences of the legislators are quadratic or Euclidean characterized by

bliss points, the most preferred policies. In each period of infinite horizon

1 The distributive and the spatial static models represent canonical environments that
generated adequate theoretical interest (Banks and Duggan, 2000, 2006a; Cardona and
Ponsati, 2007, 2011; Cho and Duggan, 2003, 2009; Eraslan, 2002; Eraslan and McLennan,
2013; Kalandrakis, 2004a, 2006a,b, among others) and are frequently used in applied work.

2 The only general existence result is Duggan and Kalandrakis (2012) and relies on
noise in players’ preferences and status-quo between-period transitions. The noise greatly
complicates equilibrium characterization and is absent in our model.

3 Baron (1996) is a spatial model. He develops partial equilibrium characterization
and provides strong intuition for the strategic forces at play. Our contribution lies in
providing complete equilibrium characterization in addition to the results discussed next.
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randomly selected legislator puts forward a proposal. Majoritarian voting

between the proposal and the status-quo determines the winning alternative

that yields utility to the legislators and becomes status-quo for the subse-

quent period. The status-quo evolves endogenously and depends on the

identity of the proposer and vote of the entire legislature in every period.

We start the equilibrium construction by defining simple stationary

Markovian proposal strategies. Markovian proposal strategies map state,

the status-quo, into the policy each player proposes. Simple stationary

Markovian proposal strategies depend on a single parameter, policy a player

proposes when the status-quo gives her ample bargaining power. In the

static setting this policy would be the player’s bliss point. In the dynamic

setting we call this policy, and the parameter determining the shape of the

simple proposal strategies, strategic bliss point. The crux of the construction

is algorithm that delivers these strategic bliss points.

We do not claim that the construction, the simple proposal strategies in

combination with the algorithm, works for any dynamic spatial legislative

bargaining game; in fact we present examples when it does not. For this

reason we derive two conditions guaranteeing that the construction delivers

Markov equilibrium. The first one, sufficient, is stronger than necessary but

easy to check. The second, necessary and sufficient, is more involved to

verify, but still focuses on a finite set of points in otherwise infinite policy

space.

Using these tools, we prove, by construction, existence of Stationary

Markov Perfect equilibrium (SMPE) for any strongly symmetric dynamic

spatial legislative bargaining game with one-dimensional policy space under

mild condition on the degree of patience of the players, condition which

ceases to bind as the number of the players increases. For games that are

symmetric, a weaker notion, we prove the same result under stronger con-

dition on the parameters of the game.4 This does not necessarily mean the

construction does not work for games that are not symmetric. The prob-

lematic aspect is defining meaningful class of asymmetric games for which

it does.

4 A game is strongly symmetric if the players’ bliss points are equidistant from each
other and the players have equal recognition probabilities. It is symmetric if pairs of
players around median have bliss points equidistant from the median’s bliss point and
have equal recognition probabilities. ‘Any’ game discussed below means for any bliss
points, recognition probabilities and discounting. See section 3 for formal definitions.
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One such class are three-player games with one-dimensional policy space.

For these, we show that the construction either delivers SMPE or we can

construct it via an easy adjustment to the simple strategies. Therefore, we

prove existence of SMPE for any three-player dynamic spatial legislative

bargaining game with one-dimensional policy space. Because the (adjusted)

simple strategies are pure, the SMPE is in pure strategies.

For one-dimensional bargaining games with general number of players,

we further demonstrate multiplicity of SMPE in the simple strategies. This

multiplicity is especially severe in symmetric games with many players;

adding two players to symmetric game increases the number of equilibria

twofold. With three players, the multiplicity is at its minimum. We prove

that for any three-player one-dimensional game if SMPE in simple strategies

exists, and we provide conditions when it does, it is essentially unique; at

most two SMPE in simple strategies exist and if so, then under non-generic

conditions.5

In fact, any multiplicity of SMPE in simple strategies is non-generic.

We show that all sets of strategic bliss points that support SMPE in simple

strategies are constructed by our algorithm. By analysing the sets of strate-

gic bliss points the algorithm produces, we provide general characterization

of all SMPE in simple strategies for any one-dimensional dynamic spatial

legislative bargaining game. And the analysis shows that the algorithm pro-

duces multiple sets of strategic bliss points under non-generic conditions.

For games with multi-dimensional policy spaces we proceed in a simi-

lar manner if to a lesser extent; we define simple strategies characterized

by strategic bliss points, specify the algorithm producing these strategic

bliss points, derive conditions guaranteeing that the construction consti-

tutes SMPE and present two classes of games, one in R2 and one in Rn,

that satisfy these conditions.

Two central features, strategic substitute nature of moderation, support

all equilibria we construct and represent the main novel contribution of the

paper. A player in equilibrium moderates when she proposes her strategic

bliss point, which is a moderate policy that is closer to the median relative to

her bliss point. A player moderates in order to constraint her opponents; by

moving the status-quo closer to median’s bliss point she constraints future

5 We stress that any uniqueness statement refers to SMPE in simple strategies and
does not imply uniqueness of SMPE in general.
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proposals to be moderate.6 When the opponents do moderate, they are

effectively constraining themselves, so that the player has no incentive to

moderate. If the opponents do not moderate, the player herself has an

incentive to do so. Moderation is strategic substitute. As a result, all the

equilibria that we construct induce asymmetric moderation, in terms of who

moderates, even if the underlying game is strongly symmetric.

The moderation and its extent are driven by two forces. The first, stan-

dard, force pushes the players towards their stage utility optimum, towards

their bliss points. The second, strategic, force pushes the players towards

the bliss point of the median player, in an attempt to constraint the future

policies of all other players. Strategic bliss point is the point where these

two forces cancel out. The strategic force gains prominence and the extent

of moderation increases with patience of the players and with higher prob-

ability of recognition of their direct opponents, players with bliss points on

the other side of the median.

We proceed as follows. Next section surveys existing dynamic legislative

bargaining literature. Section 3 introduces our model, notation and solution

concept. Sections 4 and 5 are devoted to the analysis of one-dimensional

model. Section 4 explains the construction, establishes the conditions guar-

anteeing the construction produces equilibrium and shows when these con-

ditions hold in symmetric games. Section 5 further investigates three-player

games. Section 6 is devoted to the analysis of multi-dimensional model.

Section 7 concludes. Most of the proofs are in appendix A1. Series of exam-

ples introduced throughout the paper are designed to illustrate prominent

features of our analysis and of the equilibria we construct.

2 Existing literature

Typical legislative dynamic bargaining model with endogenous status-quo

posits group of players bargaining in an infinite discrete time horizon with

discounting. Each period starts with a status-quo, the policy last enacted.

Randomly chosen player makes a proposal after which vote over binary

agenda, consisting of the status-quo and the proposal, follows. The winning

alternative determines players’ utility for the period and becomes the status-

6 The identity of the median and the fact that she is decisive under majority voting
rule are results that do not follow immediately.
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quo for the next one.

The original formulation of legislative bargaining as a model with en-

dogenous status-quo is usually accredited to Baron (1996) and Epple and

Riordan (1987). Baron (1996) analyses spatial bargaining model in which

the players bargain over location of policy in one-dimensional policy space.7

Epple and Riordan (1987) analyse distributive bargaining model in which

the players bargain over distribution of fixed sized budget among themselves.

In the spatial formulation the utility of players varies in all the dimensions

of the policy space. In the distributive setting the players only care about

single dimension, their share of the budget.

Besides Baron (1996), several other papers analyse spatial models us-

ing different ways to deal with their complexity. These include restrictions

on the policy space (Dziuda and Loeper, 2012; Fong, 2005), restrictions on

number of players (Forand, 2010; Nunnari and Zapal, 2013) or use of nu-

merical computations (Baron and Herron, 2003; Duggan, Kalandrakis, and

Manjunath, 2008).8

Following Epple and Riordan (1987), analysis of distributive models has

focused on equilibrium characterization and properties (Kalandrakis, 2004b,

2010; Anesi and Seidmann, 2012; Baron and Bowen, 2013) including investi-

gation of models with risk aversion or alternative decision making protocols

(Battaglini and Palfrey, 2012; Bowen and Zahran, 2012; Baron and Bowen,

2013; Nunnari, 2012; Richter, 2013). Models combining distributive and spa-

tial aspects with (Baron, Diermeier, and Fong, 2012; Cho, 2004) or without

(Bowen, Chen, and Eraslan, 2012) electoral competition usually investigate

joint public (spatial) and private (distributive) good determination.9,10

7 The model of Baron (1996) is most closely related to ours. His model is almost
identical to our one-dimensional model; he restricts policies to R+, which we allow for but
do not require, and his stage utilities are general, not quadratic. See discussion following
Proposition 1 for why the quadratic utilities cannot be dispensed with.

8 Papers that embed dynamic spatial models in richer economic or political settings
include Piguillem and Riboni (2013a) (capital taxation), Piguillem and Riboni (2013b)
(present-biased legislators), Riboni (2010); Riboni and Ruge-Murcia (2008) (monetary
policy) or Levy and Razin (2013) (interest group influence).

9 Electoral competition in combination with legislative bargaining. However, as Forand
(2010) and Nunnari and Zapal (2013) illustrate, the difference between electoral competi-
tion and legislative bargaining can be merely difference in labelling.

10 Two papers, analysing judicial precedents (Anderlini, Felli, and Riboni, 2011) and
legislative sunset provisions (Zapal, 2012, chapter 1), are models with endogenous status-
quo where in every period players bargain jointly over policy and, not necessarily equal,
status-quo for the next period.
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General characterization and existence results for Stationary Markov

Perfect equilibria, standard solution concept in the papers surveyed here,

are few. Kalandrakis was the first to provide characterization of SMPE for

the distributive model with three (Kalandrakis, 2004b) or more than five

(Kalandrakis, 2010) players. Diermeier and Fong (2011) provide algorithm

leading to SMPE in a model with persistent agenda setter and discrete pol-

icy space. Duggan and Kalandrakis (2012) provide very general SMPE ex-

istence results assuming noise in preferences and status-quo between-period

transitions, assumption that considerably complicates equilibrium charac-

terization.11,12

We want to highlight that the endogenous status-quo literature just dis-

cussed is related but distinct from the models with single decision to be taken

and bargaining proceeding through a series of rounds with evolving default

(Anesi and Seidmann, 2013; Bernheim, Rangel, and Rayo, 2006; Diermeier

and Fong, 2009; Vartiainen, 2014). Also related but distinct is literature with

dynamic political economy models (Azzimonti, 2011; Battaglini and Coate,

2007, 2008; Battaglini, Nunnari, and Palfrey, 2012) where the dynamic link

stems not from persistent policies but from accumulation of durable public

good, (public) debt or capital.

3 Model, notation, solution concept

Any game G = 〈n,x, r, δ,X〉 is fully specified by n, x, r, δ, and X all satisfy-

ing the assumptions we introduce now. These assumptions are maintained

throughout without further notice. N = {1, . . . , n} is the set of players with

odd n ≥ 3. Stage utility of i ∈ N from policy p is ui(p) = −(p− xi)2 where

xi is bliss point of i. x = {x1, . . . , xn} denotes the set of bliss points of all

the players and we assume all the bliss points are distinct and ordered such

that xi < xi+1 for ∀i ∈ N \ {n}. Median player is denoted by m = dn/2e.
Median bliss point is denoted by xm = xdn/2e.

In each discrete period of infinite horizon i ∈ N is recognized to propose

11 Roberts (2007), Hortala-Vallve (2011) and Penn (2009) characterize equilibria in
models with random, not endogenous and strategically chosen, proposals.

12 Faced with complex equilibria of the dynamic legislative bargaining models, many au-
thors use, at least partially, numerical computations (Baron and Herron, 2003; Battaglini
and Palfrey, 2012; Bowen et al., 2012; Duggan et al., 2008; Piguillem and Riboni, 2013a;
Riboni and Ruge-Murcia, 2008, among others) or provide numerical computation tech-
niques tailored to these models (Duggan and Kalandrakis, 2011).
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policy p ∈ X where X ⊆ R is compact convex interval. If X ( R then

we require X to be symmetric around xm and include both min {x} and

max {x}. r = {r1, . . . , rn} with ri > 0 for ∀i ∈ N is the set of probabilities of

recognition and naturally
∑n

i=1 ri = 1. Given status-quo x ∈ X, recognized

i ∈ N proposes policy p ∈ X, majoritarian voting between x and p follows,

the winning alternative becomes the new status-quo and determines utility

of the players. Utility player i ∈ N receives from an infinite path of policies

p = {p0, p1, . . .} is

Ui(p) =
∞∑
t=0

δtui(pt) (1)

where δ ∈ [0, 1) is common discount factor.

Define d(x) = |x − xm| to be the distance of x ∈ R from median xm.

da(x) = xm + d(x) is x mapped into the point above median’s bliss point

and db(x) = xm − d(x) is x mapped into the point below median’s bliss

point. Note x ∈ {db(x), da(x)}. Similar operation is defined on the space

of players’ indexes. dI(i) = |i −m| denotes index ‘distance’ of i ∈ N from

median. dIa(i) = m + dI(i) and dIb(i) = m − dI(i) is pair of players index

distance dI(i) from median.

Na = {i ∈ N |xi > xm} is the set of players with bliss points above

median and Nb = {i ∈ N |xi < xm} is the set of players with bliss points

below median. Sums of recognition probabilities for the two groups of players

are denoted by ra =
∑

i∈Na ri and rb =
∑

i∈Nb ri. For j ∈ {1, . . . , n−12 },
rej =

∑j
i=1 ri will denote sum of recognition probabilities of j most extreme

players in Nb. By convention rej = 0 when j = 0. We will be using this

notation in the context of symmetric games and do not need to establish

similar notation for players in Na. Finally, f(a−) = limx→a− f(x) denotes

one-sided limit of real-valued function from below and f(a+) = limx→a+ f(x)

denotes one-sided limit of real-valued function from above.

Definition 1 (Symmetric G). G is symmetric if and only if, for ∀i ∈ N ,

d(xdIb(i)
) = d(xdIa(i)) and rdIb(i)

= rdIa(i).

Definition 2 (Strongly symmetric G). G is strongly symmetric if and only

if ri = rj for ∀i ∈ N and ∀j ∈ N and xi − xi−1 = xi+1 − xi for ∀i ∈
{2, . . . , n− 1}.

Pure stationary Markov strategy of each i ∈ N regarding which policy

to propose given status-quo x is p̂i : X → X. We denote by σ̂ = (p̂1, . . . , p̂n)
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profile of pure strategies, reserving notation pi and σ = (p1, . . . , pn) exclu-

sively for the simple strategies defined below (definition 4). As is standard,

σ̂−i = (p̂1, . . . , p̂i−1, p̂i+1, . . . , p̂n).

Any profile of pure stationary Markov strategies σ̂ = (p̂1, . . . , p̂n) induces

continuation value function of player i ∈ N , Vi : X → R. Vi(x|σ̂) denotes the

expected utility of i from an infinite future of play according to σ̂, starting

with status-quo x, before the identity of proposer in the next period has

been determined. It can be computed as

Vi(x|σ̂) =
n∑
j=1

rj [ui(p̂j(x)) + δVi(p̂j(x)|σ̂)] (2)

and dynamic (expected) utility of i from accepted x, Ui : X → R, is

Ui(x|σ̂) = ui(x) + δVi(x|σ̂). (3)

We need several assumptions in order to be able to calculate Vi as in

(2). The first one concerns the proposal strategies. We assume that pro-

posals with zero probability of acceptance are never made.13 The second

one concerns the voting strategies. We assume that all the players use stage

undominated voting strategies of Baron and Kalai (1993) when voting be-

tween the proposed policy p ∈ X and the status-quo x ∈ X and vote for p

when indifferent between p and x.14 This implies i votes for p rather than

x if and only if

Ui(p|σ̂) ≥ Ui(x|σ̂). (4)

These assumptions imply that any proposed policy is also accepted, making

distinction between proposed and accepted policies superfluous and (2) valid

expression for Vi. Note also that the voting strategies are fully determined

by the proposal strategies (along with the assumptions we have made). We

abuse notation and terminology somewhat and subsume the voting strategies

13 Given status-quo x, proposing player whose utility maximizing proposal is x can
obtain this utility either by proposing x or by making proposal she knows would be
rejected. We assume she does the former. This assumption does not change the set of
equilibria that are observationally, in terms of outcomes, equivalent and is standard in the
dynamic bargaining literature.

14 Stage undominated voting is standard assumption in voting literature and rules out
implausible equilibria that can support arbitrary outcomes that are accepted because no
voter is pivotal. Assuming indifferent voter casts her vote for the proposed policy avoids
any open set complications.

8



into the proposal strategies σ̂ or σ without changing their notation or name.

Social acceptance set for given x ∈ X, A(x|σ̂), will be the set of policies

such that

A(x|σ̂) =
{
p ∈ X|n+1

2 ≥ |{i ∈ N |Ui(p|σ̂) ≥ Ui(x|σ̂)}|
}

(5)

and i ∈ N recognized to propose will do so choosing policy from among

arg maxp∈A(x|σ̂) ui(p) + δVi(p|σ̂).

Definition 3 (Stationary Markov Perfect Equilibrium). A stationary Markov

perfect equilibrium (SMPE) is a profile of stationary Markov strategies σ̂∗ =

(p̂∗1, . . . , p̂
∗
n) such that, for ∀x ∈ X and ∀i ∈ N ,

p̂∗i (x) ∈ arg max
p∈A(x|σ̂∗)

ui(p) + δVi (p|σ̂∗)

and i ∈ N votes for proposed p ∈ X against x ∈ X if and only if

Ui(p|σ̂∗) ≥ Ui(x|σ̂∗).

4 Equilibria with X ⊆ R

The first result we prove greatly simplifies the derivation of decisive coali-

tions needed to approve any given proposal p. It implies that acceptance

sets A players face when proposing are determined solely by the shape of

median’s expected utility.

Proposition 1 (Dynamic median voter theorem for X ⊆ R).

For any (not necessarily SMPE) profile of pure stationary Markov strategies

σ̂, with implied voting such that, for ∀i ∈ N , i ∈ N votes for proposed p ∈ X
against status-quo x ∈ X if and only if Ui(p|σ̂) ≥ Ui(x|σ̂), p is accepted if

and only if Um(p|σ̂) ≥ Um(x|σ̂).

Proof. See appendix A1

We stress that Proposition 1 crucially depends on the utility functions

being quadratic. Definition of median as the player with xm comes from the

fact that m is decisive in the vote between two deterministic alternatives

x ∈ X and p ∈ X. In the model, voting between status-quo x and proposed

p means voting between two lotteries as each of the alternatives induces
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distribution over future policies. That decisiveness of median in the choice

over pure alternatives extends to the choice over lotteries, under quadratic

preferences, is well known result (Banks and Duggan, 2006b). Equally well

known is the fact that this result does not extend beyond quadratic utilities

(see their example following proof of lemma 2.1).15

4.1 Simple strategies, strategic bliss points

Definition 4 (Simple proposal strategies). Simple pure stationary Markov

proposal strategy of i ∈ N is

pi(x|x̂i) =


min{da(x), x̂i} if i ∈ Na

x̂m if i = m

max{db(x), x̂i} if i ∈ Nb

where x̂i is strategic bliss point of i.

Given set of strategic bliss points x̂ = {x̂1, . . . , x̂n} profile of simple

proposal (and implied voting) strategies is σ = (p1, . . . , pn). With pi fully

determined by x̂i, we abuse terminology somewhat and also call x̂i proposal

strategy of i and x̂ profile of strategies.

Lemma 1 (Minimal properties of SMPE x̂). If profile of simple stationary

Markov strategies σ induced by set of strategic bliss points x̂ constitutes

SMPE, then x̂i ≥ xm for ∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm.

Proof. See appendix A1

Given x̂ we can define several objects needed in the analysis below. By

ND = {x̂m, db(x̂1), da(x̂1), . . . , db(x̂n), da(x̂n)} we denote the set of points

such that, for any x ∈ ND, there exists at least one pi that is not differen-

tiable with respect to x at x. D = X \ ND denotes set such that x ∈ D
implies that all the strategies are differentiable with respect to x at x.16

15 Alternative voting rules, with veto player, or decision making protocols, with repre-
sentative voter, would not necessitate the quadratic stage utilities for the social acceptance
set to be driven by preferences of a unique player. Our approach to equilibrium construc-
tion would be applicable to these alternative models as well, even with general stage
utilities.

16 This is not entirely precise. If x̂i = xm for ∀i ∈ N all pi are constant and hence
differentiable on X. ND should be understood as the set of points at which some pi might
not be differentiable. As we are primarily concerned with taking derivatives when these
do not exist, that is with D, this is a mere imprecision in the label for ND.
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For ∀x ∈ D define C(x) = {i ∈ N |p′i(x) = 0} to be the set of players who,

at x, are on constant part of pi (judging by its derivative). Similarly, for

∀x ∈ D define NC(x) = {i ∈ N |p′i(x) 6= 0} to be the set of players who, at

x, are on non-constant part of pi. It is easy to check that C(x)∪NC(x) = N

for ∀x ∈ D. We deliberately leave C and NC undefined for x ∈ ND as

the interpretation of constant and non-constant has no meaning at points

in ND. Despite C being a correspondence, define its one-sided limits at

any x ∈ ND, C(x−) and C(x+), as C(x−) = {i ∈ N |p′i(x−) = 0} and

C(x+) = {i ∈ N |p′i(x+) = 0}. Similarly, NC(x−) = {i ∈ N |p′i(x−) 6= 0} and

NC(x+) = {i ∈ N |p′i(x+) 6= 0} for any x ∈ ND.17

For ∀x ∈ D define rnc(x) =
∑

i∈NC(x) ri to be the sum of recognition

probabilities of players on non-constant part of their strategy. Splitting

rnc into the probabilities of recognition for players in Na and Nb, we have

rnc,a(x) =
∑

i∈NC(x)∩Na ri and rnc,b(x) =
∑

i∈NC(x)∩Nb ri with rnc(x) =

rnc,a(x) + rnc,b(x) for ∀x ∈ D. These objects are undefined at x ∈ ND,

nevertheless possess one-sided limits at these points (defined using one-sided

limits of NC).
For ∀i ∈ N \ {m} define possibly empty sets

Si =

ND ∩ (x̂i, xi) if i ∈ Na

ND ∩ (xi, x̂i) if i ∈ Nb

Li = {x ∈ D|U ′i(x) = 0}

Ni =

((ND ∪ Li) ∩ (x̂i, xi)) ∪ {xi, x̂i} if i ∈ Na

((ND ∪ Li) ∩ (xi, x̂i)) ∪ {xi, x̂i} if i ∈ Nb

(6)

with elements of Ni ordered in increasing (decreasing) order if i ∈ Na (i ∈
Nb). Si is the set points in the interval between x̂i and xi at which pj is

not differentiable for some j ∈ N . Ni is similar set of points adding points

of local maxima of Ui, Li, and x̂i and xi. We are well aware that all ND,

D, C, NC, rnc, rnc,a, rnc,b, Si, Li and Ni are defined relative to x̂ and hence

relative to σ. We suppress the dependence of these objects on σ only when

the chance of confusion is minimal.

17 One-sided limits of C and NC at any x ∈ D are defined similarly. It is easy to see
that NC and C are both piecewise ‘constant’ on intervals determined by ND and hence,
for ∀x ∈ D, C(x) = C(x+) = C(x−) and NC(x) = NC(x+) = NC(x−).
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Lemma 2 (Properties of Vi and Ui induced by x̂). For any x̂ with x̂i ≥ xm
for ∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm and induced profile of

strategies σ, for ∀i ∈ N ,

1. Vi(db(x)|σ) = Vi(da(x)|σ) for ∀x ∈ X

2. Ui(db(x)|σ) < Ui(da(x)|σ) if i ∈ Na, Ui(db(x)|σ) > Ui(da(x)|σ) if

i ∈ Nb and Um(db(x)|σ) = Um(da(x)|σ), for ∀x ∈ X \ {xm}

3. Ui is continuous on X

4. U ′′i (x|σ) < 0 for ∀x ∈ D(σ)

5. Um(x|σ) > Um(y|σ) for ∀x ∈ X, ∀y ∈ X such that d(x) < d(y)

6. A(x|σ) = [db(x), da(x)] for ∀x ∈ X

Proof. See appendix A1

Besides several technical properties of Vi and Ui induced by x̂, Lemma

2 demonstrates the shape of the social acceptance set A. Because pi(x|x̂) ∈
[db(x), da(x)] for ∀i ∈ N and ∀x ∈ X whenever x̂ satisfies the requirements

of the lemma, any proposal generated by simple strategy based on such x̂

belongs to the social acceptance set induced by x̂.

Following example illustrates the shape of the simple strategies in strongly

symmetric G with three players for, as we prove below, a set of strategic bliss

points that constitutes SMPE.

Example 1. Consider G with n = 3, xi = i and ri = 1
n for ∀i ∈ N and

δ = 0.9. Figure 1 illustrates simple strategies induced by these parameters

along with a set of strategic bliss points x̂ = {1.6, 2, 3}.

Let us first explain rational behind calling x̂i strategic bliss points. x̂i

is policy i proposes when the status-quo gives her ample bargaining power,

that is, when i is not constrained by the acceptance set of the median. In

the example, this happens when x /∈ (1.6, 2.4) for i = 1 and x /∈ (1, 3)

for i = 3. Not being constrained means i can propose policy maximizing

her dynamic utility Ui, her strategic bliss point. Notice also that meaning

of ‘ample bargaining power’ is relative to the given profile of (equilibrium)

strategies inducing the acceptance correspondence A.

12



Figure 1: Simple strategies in example 1

pi(x)

x1 2 3

x1 = 1

x̂1 = 1.6

x2 = x̂2 = 2

x3 = x̂3 = 3

p1(x)

p2(x)

p3(x)

The reason why x̂i and xi differ is because the former policy maximizes

dynamic utility Ui = ui + δVi, whereas the latter policy maximizes (static)

utility ui. Take player 1 from example 1 and suppose the status-quo x = 1.

We claim p1(1) = 1.6 whereas policy maximizing u1 is x1 = 1. With x = 1,

A(1) = [1, 3] hence x1 = 1, if proposed, would be accepted. The reason why

x1 = 1 6= x̂1 = 1.6 is that in the dynamic setting player 1 takes into account

impact of her proposal on the distribution of future policies. Two such

distributions, induced by proposing x1 = 1 and p1(1) = 1.6, are indicated

by the (red) circles to left of x = 2 in figure 1. By proposing p1(1) = 1.6, as

opposed to proposing x1 = 1, player 1 foregoes chance to maximize her static

utility but brings future policy of player 3 from p3(1) = 3 to p3(1.6) = 2.4.

That is, player 1 moderates, foregoes (current) static utility, in an attempt

to constraint future policy of player 3, increasing her future utility when she

is not in possession of proposal power. The incentive to moderate is purely

strategic; absent the intertemporal link created by persistent policies, player

1 would propose x1 = 1.

The extent of moderation is driven by the interplay of costs of moder-

ation, foregone current utility, with benefits of moderation, gains in future

utility, and is shaped by two forces. The first, standard, pushes each player

towards her bliss point in an attempt to maximize current utility. The sec-

ond, strategic, pushes each player towards the bliss point of the median

player in an attempt to constraint the future policies of player’s opponents.

13



Finally, we claim that player 3 from example 1 does not moderate and

her strategic bliss point coincides with her bliss point. Clearly, the strategic

force to moderate is present for player 3 as well. Take status-quo x = 3. We

are claiming p3(3) = 3 instead of moderating and proposing, using the same

extent of moderation as player 1, p′ = 2.4. Both p3(3) = 3 and p′ = 2.4

would be accepted with status-quo x = 3 and lead to the distribution over

future policies indicated by the (blue) circles to the right of x = 2 in figure 1.

The reason why player 3 does not moderate is because proposing p′ = 2.4 or

p3(3) = 3 induces the same future policy by player 1, p1(2.4) = p1(3) = 1.

In order to constraint future policy of player 1, player 3 would have to

moderate to some policy in [2, 2.4), which is too costly for her in terms of

foregone current utility. In other words, moderation is strategic substitute;

when player 1 moderates, it is best response for player 3 not to moderate and

when player 1 does not moderate, player 3 best responds by moderating.18

We now specify derivation of the set of strategic bliss points x̂. These

will be constructed using algorithm 1. The simple strategies in combination

with x̂ from the algorithm need not constitute SMPE. At this stage we view

x̂ and the profile of strategies σ it induces as a candidate for SMPE.

Algorithm 1 (Strategic bliss points with X ⊆ R). For set of players Pt in

step t of the algorithm, denote rt,a =
∑

i∈Pt∩Na ri and rt,b =
∑

i∈Pt∩Nb ri.

step 0 Set x̂m = xm and P1 = N \ {m}

step t For i ∈ Pt compute

x̂i,t =

xi + 2δrt,b(xm − xi) if i ∈ Na

xi + 2δrt,a(xm − xi) if i ∈ Nb

Define Rt = {i ∈ Pt|(xi − xm)(x̂i,t − xm) ≤ 0}
If Rt = ∅, select one j ∈ arg mini∈Pt d(x̂i,t), set x̂j = x̂j,t

If Rt 6= ∅, select one j ∈ Rt, set x̂j = xm

18 The insight that in any SMPE at least one player does not moderate goes beyond the
simple strategies considered here. In fact, following claim can be easily proven. Consider
any profile of pure proposal strategies σ̂ such that, for ∀i ∈ N \ {m}, p̂i(x) = x̂i for
∀x /∈ (db(x̂i), da(x̂i)) with d(x̂i) < d(xi). That is, for ∀i ∈ N \ {m}, i moderates to x̂i
whenever the status-quo x satisfies x ≤ db(x̂i) or x ≥ da(x̂i). Then σ̂ cannot constitute
SMPE. The intuition is, using d(x1) ≤ d(xn), that Vn is constant on X \ (db(x̂n), da(x̂n)),
Un inherits the shape of un and thus Un(x̂n) < Un(xn). That is, n has no incentive to
moderate to x̂n.
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Set Pt+1 = Pt \ {j} and if Pt+1 6= ∅, proceed to step t+ 1

It is immediate that the algorithm finishes in n − 1 steps and produces

full set of strategic bliss points x̂ with x̂i ∈ [xm, xi] if i ∈ Na and x̂i ∈ [xi, xm]

if i ∈ Nb. Short argument also shows that x̂i ≤ x̂i+1 for i ∈ N \ {n} and

that x̂i = xi for i = 1 or i = n but not both (unless δ = 0).

The intuition behind the algorithm is as follows. It starts with a full set

of players apart from the median. It conjectures that strategy of all these

players will be characterized by strategic bliss points equal to +∞ for i ∈ Na

and −∞ for i ∈ Nb, that is players in Na proposing da(x) and players in Nb

proposing db(x). Calculating Ui for this conjectured strategy, the algorithm

computes x̂i,1 which is a policy at which Ui attains its maximum. At x̂i,1 it

ceases to be optimal for i to propose da(x) or db(x) and the best response,

for any status-quo further from xm relative to x̂i,1, is to propose x̂i,1. The

algorithm then drops player with x̂i,1 closest to xm as the first player for

whom, moving status-quo away from xm, the conjectured strategy ceases to

be a best response. Proceeding to step 2, the algorithm conjectures that

strategy of all the players not previously dropped will be characterized by

bliss points equal to +∞ and −∞ and continues similarly.

There are two possible complications. The first one arises when the

algorithm arrives at x̂i,t and x̂j,t with d(x̂i,t) = d(x̂j,t) and both i and j

belong to arg mini∈Pt d(x̂i,t). This implies i ∈ Na and j ∈ Nb or vice versa

and the algorithm does not specify which of the players to drop but requires

for exactly one of them to be dropped. This reflects the strategic substitute

nature of moderation. If i is dropped then j does not want to moderate and

the algorithm retains j. If j is dropped then i does not want to moderate

and is retained. That, say, i is retained means that the algorithm might

eventually produce x̂ with i moderating as well. But this moderation is

driven by other players still in the algorithm. In example 1 dropping j

meant i was retained as the sole player, in which case the algorithm produces

x̂i = xi. Example 1 (continued) below illustrates this complication.

The second complication arises when 2δra ≥ 1 or 2δrb ≥ 1 (both cannot

hold simultaneously as ra+rb = 1−rm < 1). Suppose 2δra ≥ 1 holds. Then

Rt 6= ∅, Rt ⊆ Nb and Rt ∩ Na = ∅ for ∀t ∈ {1, . . . , n−12 } which means that

the algorithm sequentially drops all the Nb players in the first n−1
2 steps

and x̂i = xm for ∀i ∈ Nb. That is, proposal strategies of all the Nb players
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are identical to the proposal strategy of the median player. Intuitively,

when the Na players are very likely to propose, the strategic force pushing

the Nb players towards moderation is very strong, dominates any concerns

for current utility and the greatest extent of constraint the Nb players can

impose on the Na players is by proposing xm. When this happens, the

algorithm also produces x̂i = xi for ∀i ∈ Na, that is, the Na players do not

moderate. Example 2 below illustrates this complication.

Example 1 (continued). In step 0 the algorithm drops the median player

and sets x̂2 = x2 = 2. In step 1 the algorithm computes x̂1,1 = 1.6 and

x̂3,1 = 2.4 and, by dropping player 1, produces x̂3 = x̂3,2 = 3 as already an-

ticipated in figure 1. Notice that dropping player 3 in step 1 would produce a

symmetric around xm but distinct set of strategic bliss points x̂ = {1, 2, 2.4}.

Example 2 (Players proposing identically as median). Consider G with

n = 5, xi = i for ∀i ∈ N , r = {0.4, 0.4, 0.1, 0.05, 0.05} and δ = 0.9. It is

easy to confirm that R1 = {4, 5} with the algorithm dropping player 4 and

R2 = {5} with the algorithm dropping player 5. After two more steps, the

algorithm produces x̂ = {1, 2, 3, 3, 3}.

The following parametrization is taken from Duggan and Kalandrakis

(2007). They numerically compute SMPE in a model with preference and

status-quo transition noise our setup lacks, but our methodology is fully

applicable to the noise-less version of their model.

Example 3 (Duggan and Kalandrakis (2007) parametrization). Consider G
with n = 5, x = {1, 1.5, 2, 2.8, 3}, ri = 1

n for ∀i ∈ N and δ = 0.9. The algo-

rithm eliminates players 2, 1, 4, and 5 in steps 1 through 4 respectively and

produces a unique vector of strategic bliss points x̂ = {1.72, 1.86, 2, 2.8, 3}.

Following lemma summarizes the key properties of any set of strategic

bliss points produced by algorithm 1. The real significance of the lemma

arises from Proposition 2 that follows.

Lemma 3 (Characterization of x̂ from algorithm 1). Let x̂ be set of strategic

bliss points produced by algorithm 1. Then

1. if δ = 0, x̂ = x

2. if δ ∈ (0, 1) and 1 ≤ 2δrg for some g ∈ {a, b}, x̂i = xm for ∀i ∈ N \Ng

and x̂i = xi for ∀i ∈ Ng
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3. if δ ∈ (0, 1), 1 > 2δra and 1 > 2δrb, x̂i < x̂i+1 for ∀i ∈ N \ {n} and

d(x̂i) 6= d(x̂j) for ∀i ∈ N , ∀j ∈ N , i 6= j

Proof. See appendix A1

Proposition 2. Let X̂ be set of sets of strategic bliss points produced by

algorithm 1. If σ induced by x̂ constitutes SMPE, then x̂ ∈ X̂.

Proof. See appendix A1

Proposition 2 states that if there exists set of strategic bliss points x̂ that

induces SMPE σ, then x̂ is produced by algorithm 1. Lemma 3 thus not only

characterizes x̂ produces by algorithm 1, it also constitutes characterization

of SMPE in simple proposal strategies.19 In addition, Proposition 2 implies

that #X̂, the number of sets of strategic bliss points produced by the al-

gorithm, puts an upper bound on the number of SMPE in simple proposal

strategies. If algorithm 1 produces unique x̂, SMPE in simple strategies is

either unique or fails to exists.20

From the way the algorithm constructs x̂, #X̂ ≥ 2 is possible only if it

in step t arrives at x̂i,t and x̂j,t with d(x̂i,t) = d(x̂j,t). The equality rewrites

as d(x̂i)(1 − 2δrt,b) = d(x̂j)(1 − 2δrt,a) and is non-generic. That is, there

exists a perturbation of x by ε > 0, x(ε), such that algorithm 1 applied to

G(ε) = 〈n,x(ε), r, δ,X〉 produces unique x̂(ε). In fact, any x̂ ∈ X̂ can be

approached by unique x̂(ε). Following lemma states this result formally and

its proof constructs the claimed perturbation.

Lemma 4. Fix arbitrary x̂ ∈ X̂ from algorithm 1 applied to G. Then there

exists perturbation of x by ε > 0, x(ε), and ε̄ > 0, such that limε→0 x(ε) = x

and algorithm 1 applied to G(ε) = 〈n,x(ε), r, δ,X〉, for ∀ε ≤ ε̄, produces

unique set of strategic bliss points x̂(ε) such that limε→0 x̂(ε) = x̂.

19 The lemma states that even when G is strongly symmetric and δ ∈ (0, 1), no two
strategic bliss points can be the same distance from the median bliss point. The reason
is strategic substitute nature of moderation. If n = 5, player 2 starts moderating when
the status-quo is distance d(x̂2) from x3 = xm. It cannot be SMPE for player 4 to start
moderating at d(x̂4) = d(x̂2); if player 2 starts at d(x̂2) it is optimal for player 4 to start at
d(x̂′4) > d(x̂2), if player 4 starts at d(x̂4) it is optimal for player 2 to start at d(x̂′2) > d(x̂4).
Lemma 3 with Proposition 2 imply that the example of full equilibrium characterization
in Baron (1996, based on strategic bliss points in (18) and summarized in Table 1) cannot
constitute SMPE.

20 We stress that all the uniqueness statements pertain to SMPE in simple strategies
and should be read as referring to uniqueness of SMPE in the class of SMPE in simple
strategies.
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Proof. See appendix A1

4.2 Necessary and sufficient conditions

We are now in position to state two conditions that guarantee that the set

of strategic bliss points x̂ from algorithm 1 and the profile of strategies σ it

induces constitutes SMPE.

Definition 5 (Condition S, sufficient). Set of strategic bliss points x̂ from

algorithm 1 and induced profile of strategies σ satisfies condition S if and

only if, for ∀i ∈ N \ {m} and ∀x ∈ Si(σ),

x− xi − 2δrnc,b(x
+|σ)(xm − xi) ≥ 0 if i ∈ Na

x− xi − 2δrnc,a(x
−|σ)(xm − xi) ≤ 0 if i ∈ Nb.

(S)

Definition 6 (Condition N, necessary and sufficient). Set of strategic bliss

points x̂ from algorithm 1 and induced profile of strategies σ satisfies condi-

tion N if and only if, for ∀i ∈ N \ {m} and denoting elements of Ni(σ) by

{z0, z1, . . .},

J∑
j=1

[
Ti(x|σ)

]z+j−1

z−j

≥ 0 for ∀J ∈ {1, . . . , |Ni(σ)|} if i ∈ Na

J∑
j=1

[
Ti(x|σ)

]z−j−1

z+j

≥ 0 for ∀J ∈ {1, . . . , |Ni(σ)|} if i ∈ Nb

(N)

where

Ti(x|σ) = − 2

1− δrnc(x|σ)

[
x2

2
− ci(x|σ)x

]

ci(x|σ) =

xi + 2δrnc,b(x|σ)(xm − xi) if i ∈ Na

xi + 2δrnc,a(x|σ)(xm − xi) if i ∈ Nb.

Proposition 3 (SMPE under S and N conditions). Set of strategic bliss

points x̂ from algorithm 1 and induced profile of strategies σ constitutes

SMPE

1. if x̂ satisfies condition S

2. if and only if x̂ satisfies condition N
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Proof. See appendix A1

The reason why both S and N guarantee that x̂ defining the simple

strategies constitutes SMPE is following. First note that player i ∈ Na

would never propose policy p < xm due to symmetry, around xm, of the

acceptance sets A and of the continuation value functions Vi. Furthermore,

in the proof of the proposition we show that Ui is increasing on [xm, x̂i]

and decreasing on [xi,+∞). However, for the simple strategy with x̂i to be

best response to the strategies of the other players, Ui has to be decreasing

on [x̂i, xi] as well. From Lemma 2 we know Ui is piecewise concave, which

means ensuring that right derivative of Ui is non-positive, at any point in

ND that falls into (x̂i, xi), suffices for Ui to be decreasing on [x̂i, xi]. This

is what condition S does. When it holds, Ui is increasing on [xm, x̂i] and

decreasing on [x̂i,+∞), implying that proposing da(x) when the status-quo

x is such that x̂i /∈ A(x) and proposing x̂i otherwise is optimal for i.

Note that condition S is stronger than necessary. It ensures that Ui is

decreasing on [x̂i, xi] while for x̂i to be optimal for i ∈ Na, only Ui(x̂i) ≥
Ui(x) for ∀x ≥ x̂i is required. This is what condition N does. It only looks

at a finite set of points using the fact that Ui is piecewise quadratic and

Ui(x)− Ui(y) =
[∫

∂
∂xUi(x)

]x
y
.

Despite the fact that both conditions guaranteeing existence of SMPE

only need to be checked at a finite set of points, their disadvantage is that

they apply to the strategic bliss points from algorithm 1. Relating these

conditions directly to the parameters defining G is non-trivial due to com-

plicated mapping from n, x, r and δ to x̂. This is why in the next section

we look at symmetric environments. Putting enough structure on the pa-

rameters defining G will allow us to relate (mainly) condition S to these

parameters.

We have explained that the incentive of the players to moderate is driven

by their concern about the future policy outcomes. It is natural to conjec-

ture that when the players are almost myopic, the strategic bliss points x̂

differ little from x and hence induce SMPE σ. Following proposition derives

conditions such that the conjecture is indeed true.

Proposition 4 (Condition N holds for small δ). If ri ∈ [
rj
2 , 2rj ] for every

pair of players {i, j} with d(xi) = d(xj), then there exists δ̄ ∈ (0, 1), such

that for ∀δ ≤ δ̄ there exists x̂ from algorithm 1 that satisfies condition N.
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Proof. See appendix A1

Before we proceed we provide two examples. The first one shows that

despite apparent complexity of conditions S and N these can be trivial to

verify. The second one shows that whether these conditions are satisfied or

not can depend non-monotonically on δ. It is also easy to see that both of

the conditions hold in examples 2 and 3.

Example 1 (continued). With x = {1, 2, 3} and x̂ = {1.6, 2, 3}, the set of

points at which differentiability of (at least some of) the proposal strategies

might fail is ND = {1, 1.6, 2, 2.4, 3}. Set of players on non-constant part of

their strategy is

NC(x) =


{1, 3} for x ∈ (1.6, 2) ∪ (2, 2.4)

{3} for x ∈ (1, 1.6) ∪ (2.4, 3)

∅ for x ∈ (−∞, 1) ∪ (3,+∞)

which induces rnc,a(x) = 1
3 for x ∈ (1, 2) ∪ (2, 3) and rnc,b(x) = 1

3 for x ∈
(1.6, 2)∪(2, 2.4) with both rnc,a and rnc,b equal to 0 for any other x ∈ X\ND.

Because S1 = ND ∩ (1, 1.6) = ∅ and S3 = ND ∩ (3, 3) = ∅ and because

L1 = L3 = ∅, we have N1 = {1, 1.6} and N3 = {3}. Conditions S and N
hold, which, by Proposition 3, implies σ induced by x̂ = {1.6, 2, 3} constitutes

SMPE.

Example 4 (Non-monotonic failure of S and N conditions). Consider G
with n = 7, xi = i and ri = 1

n for ∀i ∈ N and δ = 0.5. Then algorithm

1 produces, depending on the choice of players to drop, eight different sets

of strategic bliss points x̂. For every x̂, condition S, and by implication

condition N, holds. For the same G with δ = 0.9 the number of x̂ from

algorithm 1 reduces to two but both fail both S and N conditions. For the

same G with δ = 0.95 there are again two possible x̂ and for both condition

S fails while condition N holds.

4.3 Symmetric games

Recall that G is symmetric if any pair of players {dIb(i), dIa(i)} has equal

recognition probabilities and bliss points the same distance from xm. This

implies ra = rb <
1
2 and that rej , the sum of recognition probabilities of
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j < m most extreme players {1, . . . , j}, is equal to the sum of recognition

probabilities of players {dIa(j), . . . , n}.
The definition that follows makes sure that algorithm 1 in steps t ∈ {1, 2}

drops players {m−1,m+1}. In step t = 1, the algorithm gives option to drop

one of these two players, and in step t = 2 drops the player not eliminated in

step t = 1. In steps t ∈ {3, 4} the algorithm drops players {m−2,m+2} in a

similar manner and the same happens in any steps {t, t+1} with t odd. This

is what condition G1 ensures. Resulting structure of x̂ along with symmetry

of G allows us to write condition G2 which, as we prove in Proposition 5,

guarantees that x̂ satisfies condition S and hence induces SMPE σ. Notice

that both conditions are written in terms of parameters of G.

Definition 7 (Pairwise moderation inducing G). G induces pairwise mod-

eration if and only if G is symmetric, for ∀i ∈ {1, . . . , n−32 }

1− 2δrei
1− 2δrei+1

≤ xm − xi
xm − xi+1

(G1)

and for ∀i ∈ {1, . . . , n−32 } and ∀j ∈ {1, . . . , i}

1− 2δrej−1
1− 2δrej

≤ xm − xj
xm − xi+1

. (G2)

The complexity of the conditions defining pairwise moderation inducing

G is driven by our attempt to write them for as general class of symmetric

games as possible.21 In fact, any symmetric G induces pairwise moderation

if the players are sufficiently impatient.

Lemma 5. For any symmetric G, there exists δ̄ ∈ (0, 1) such that G induces

pairwise moderation for ∀δ ≤ δ̄.

Proof. Conditions G1 and G2 clearly hold for δ = 0. In both conditions, the

right hand side is strictly greater than unity, the left hand side is equal to

unity for δ = 0 and is increasing in δ. �
21 To understand G1 and G2, after dropping player m−1 in step 1, algorithm 1 in step 2

calculates x̂m+1,2 = xm+1+2δrem−2(xm−xm+1) and x̂m−2,2 = xm−2+2δrem−1(xm−xm−2).
G1 is then general version of condition ensuring m+ 1 is dropped, d(x̂m+1,2) ≤ d(x̂m−2,2).
When the algorithm drops player dIa(j) at a further step, db(x̂dIa(j)) ∈ Sm−1, among other
values, needs to satisfy condition S. With db(x̂dIa(j)) = xj + 2δrej (xm − xj), the condition
requires db(x̂dIa(j))− xm−1 − 2δrej−1(xm − xm−1) ≤ 0, which rewrites as G2. Because, say,

G1 rewrites as
2δri+1

1−2δrei+1
≤ xi+1−xi

xm−xi+1
, both conditions put upper bound on incentives to

moderate driven by δ and ri+1.
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There are two conditions defining pairwise moderation inducing G and we

explained rational behind both of them above. However, condition G2 turns

out to be redundant in certain ‘well behaved’ games satisfying ‘monotonicity’

of the recognition probabilities or of the distances between bliss points of

adjacent players.

Lemma 6. If condition G1 co-defining pairwise moderation inducing G
holds, then G2 in the same definition holds if at least one of the following

conditions are satisfied.

1. ri ≤ ri+1 for ∀i ∈ {1, . . . , n−32 }

2. xi − xi−1 ≤ xi+1 − xi for ∀i ∈ {2, . . . , n−32 } and 1
1−2δr1 ≤

xm−x1
xm−x2

Proof. See appendix A1

For strongly symmetric games with equidistant bliss points and equal

recognition probabilities, the conditions defining pairwise moderation in-

ducing G become trivial to verify.

Lemma 7. Symmetric G with n = 3 induces pairwise moderation. Strongly

symmetric G with n ≥ 5 and δ ≤ n
n+1 induces pairwise moderation.

Proof. Symmetric G with n = 3 obviously induces pairwise moderation as

it is symmetric and the parametric conditions in definition 7 apply only for

n ≥ 5.

For strongly symmetric G, rei = i
n and xm − xi = (n+1

2 − i)(xm − xm−1)
for any i ∈ {1, . . . , n−12 }. Plugging these expressions into condition G1 in

definition 7, which by Lemma 6 suffices, gives δ ≤ n
n+1 . �

To state the main result of this section we need the following definition.

As we explained above condition G1 ensures that algorithm 1 drops pairs

of players {dIb(i), dIa(i)} in pairs of steps {t, t + 1}. For knife edge cases

when condition G1 holds with equality, the algorithm gives option, in step

t = 1, to drop players {m − 1,m + 1} and dropping m + 1, in step t = 2,

it gives option to drop players {m− 1,m+ 2}. At this point, for x̂ to have

the structure underlying Proposition 5, we have to ensure player m − 1 is

dropped in step t = 2. That is, we need to ensure if i ∈ Na is dropped in

t = 1 then i ∈ Nb is dropped in t = 2 and vice versa, if the algorithm allows

for multiple players to be dropped. Similar choice needs to be made in any

steps t ≥ 3.
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Definition 8 (Pairwise path through algorithm 1). Series of decisions re-

garding which player to drop, if given choice, in algorithm 1 is called pairwise

path if, in step t ≥ 2, i ∈ Na is dropped when j ∈ Nb has been dropped in

step t− 1 or i ∈ Nb is dropped when j ∈ Na has been dropped in step t− 1.

Proposition 5 (SMPE with pairwise moderation). Assume G induces pair-

wise moderation. Then

1. if δ ∈ (0, 1), there exist 2(n−1)/2 distinct sets of strategic bliss points x̂

produced by pairwise paths through algorithm 1, if δ = 0, x̂ = x

2. σ induced by any of these sets of strategic bliss points constitutes SMPE

3. σ induced by any of these sets of strategic bliss points satisfies condition

S and, for ∀i ∈ N , Ui is single peaked on X

Proof. See appendix A1

Proposition 5 is the main result of this section. It proves existence of

SMPE in large class of games that induce pairwise moderation. To construct

SMPE all that is needed is the set of strategic bliss points from algorithm

1 and definition of the simple proposal strategies. The result relies on the

fact, as already anticipated, that pairwise moderation inducing G provides

for x̂ satisfying condition S. Using Lemma 7, Proposition 5 implies SMPE

existence in any symmetric G with n = 3 and any strongly symmetric G with

n ≥ 5 and δ ≤ n
n+1 , condition which virtually ceases to bind as n increases.

Following examples substantiate our claim that Proposition 5 in fact

applies to large class of games that are not strongly symmetric. First two

examples assume monotonicity in the recognition probabilities (example 5)

or in the distance between bliss points of adjacent players (example 6).

Example 7 takes strongly symmetric G and increases median player’s recog-

nition probability. Example 8 also takes strongly symmetric G but increases

distance of bliss points between players {dIb(j)−1, dIb(j)} and between play-

ers {dIa(j), dIa(j) + 1}. This produces G with three ‘clusters’ of players, one

around m and two ‘extreme’ clusters. Note also that all the examples state

conditions guaranteeing that the underlying G induces pairwise moderation.

All the conditions put upper bound on the patience of the players, collapse

to δ ≤ n
n+1 when G becomes strongly symmetric, which is allowed by all the

examples, and effectively cease to bind when n increases.22

22 Examples 5, 6 and 7 also show that the conditions on δ need not bind at all.
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Example 5 (More extreme players less/more likely to propose).

Assume G is symmetric with n ≥ 5, xi − xi−1 = xi+1 − xi for ∀i ∈
{2, . . . , n − 1} and ri ≤ ri+1 for ∀i ∈ {1, . . . , n−32 }. Then condition G1

co-defining pairwise moderation inducing G holds if and only if it holds for

i = n−3
2 ;23 when G1 holds then G2 holds as well; and G induces pairwise

moderation if and only if δ ≤ 1
2(ra+rm−1)

, which does not bind if rm−1 ≤
1
2 − ra = rm

2 .

Assume G is symmetric with n ≥ 5, xi − xi−1 = xi+1 − xi for ∀i ∈
{2, . . . , n − 1} and ri ≥ ri+1 for ∀i ∈ {1, . . . , n−32 }. Then condition G1

co-defining pairwise moderation inducing G holds if and only if it holds for

i = 1; when G1 holds and δ ≤ 1
r1(n−1) then G2 holds as well; and G induces

pairwise moderation if and only if δ ≤ min{ 1
2r1+(n−1)r2 ,

1
r1(n−1)}.

Example 6 (Increasing/decreasing extremism).

Assume G is symmetric with n ≥ 5, xi − xi−1 ≥ xi+1 − xi for ∀i ∈
{2, . . . , n−12 } and ri = ri+1 for ∀i ∈ {1, . . . , n−32 }. Then condition G1 co-

defining pairwise moderation inducing G holds if and only if it holds for

i = n−3
2 ; when G1 holds then G2 holds as well; and G induces pairwise

moderation if and only if δ ≤ n(xm−1−xm−2)
(n−1)(xm−1−xm−2)+2(xm−xm−1)

, which does not

bind if xm−1 − xm−2 ≥ 2(xm − xm−1).
Assume G is symmetric with n ≥ 5, xi − xi−1 ≤ xi+1 − xi for ∀i ∈

{2, . . . , n−12 } and ri = ri+1 for ∀i ∈ {1, . . . , n−32 }. Then condition G1 co-

defining pairwise moderation inducing G holds if and only if it holds for i = 1;

when G1 holds then G2 holds as well; and G induces pairwise moderation if

and only if δ ≤ n(x2−x1)
2(xm−x1+x2−x1) .

Example 7 (Arbitrary median’s recognition probability).

Assume G is symmetric with n ≥ 5, xi − xi−1 = xi+1 − xi for ∀i ∈
{2, . . . , n−1} and ri = 1−rm

n−1 for ∀i ∈ N\{m}. Then condition G1 co-defining

pairwise moderation inducing G either holds or fails for ∀i ∈ {1, . . . , n−32 };
when G1 holds then G2 holds as well; and G induces pairwise moderation if

and only if δ ≤ n−1
n+1

1
1−rm , which does not bind if rm ≥ 2

n+1 .

Example 8 (Clusters of players).

23 This claim, as well as similar claim for i = 1 below, does not follow trivially. We
feel providing formal proof is unnecessary but are ready to do so. To outline the idea,
the proof uses monotonicity of the recognition probabilities and equidistance of players’
bliss points. For the following example, similar proof uses monotonicity of the distances
between players’ strategic bliss points and equal recognition probabilities.
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Assume G is symmetric with n ≥ 5, xi − xi−1 = d for ∀i ∈ {2, . . . ,m} \
{j}, xj − xj−1 = d + e with e ≥ 0 where 2 ≤ j ≤ m and ri = ri+1 for ∀i ∈
{1, . . . , n−32 }. Then condition G1 co-defining pairwise moderation inducing

G holds if and only if it holds for ∀i = {1, . . . , j−2}; when G1 holds then G2

holds as well; and G induces pairwise moderation if and only if δ ≤ n

(n+1)+2
ej
d

where ej = 0 if j = 2 and ej = e if j ∈ {3, . . . ,m}.

Proposition 5 shows that there exist 2(n−1)/2 SMPE for any G that in-

duces pairwise moderation, all based on sets of strategic bliss points from

algorithm 1. In Lemma 4, we have shown that multiplicity of x̂ algorithm

1 produces is non-generic and can be perturbed away. The lemma, how-

ever, is silent about the ability of the perturbed x̂(ε) to support SMPE σ(ε).

Following proposition shows that it is indeed possible to perturb x without

upsetting the ability of the set of strategic bliss points from algorithm 1 to

support SMPE.

Proposition 6. Assume G induces pairwise moderation. Fix arbitrary x̂

produced by pairwise path through algorithm 1. Then there exists perturba-

tion of x by ε > 0, x(ε), and ε̄ > 0, such that limε→0 x(ε) = x and algorithm

1 applied to G(ε) = 〈n,x(ε), r, δ,X〉, for ∀ε ≤ ε̄, produces unique set of

strategic bliss points x̂(ε) that satisfies condition S and limε→0 x̂(ε) = x̂.

Proof. See appendix A1

Besides showing non-generic nature of the multiplicity of SMPE in pair-

wise moderation inducing G, Proposition 6 shows that equilibrium corre-

spondence mapping G into the set of SMPE is upper hemicontinuous in

x(ε), SMPE exists as x(ε) → x and continues to exist at the limit of the

sequence, at x.

4.4 Comparative statics and policy dynamics

Given the SMPE characterization from Proposition 5 comparative statics of

change in the model parameters are almost immediate. To state the next

proposition denote by p(x|σ) policy adopted in period starting with status-

quo x when the profile of proposal strategies is σ. p(x|σ) is random variable

with realizations fully determined by the identity of the proposing player.

Proposition 7 (Comparative statics with pairwise moderation). Assume

G induces pairwise moderation. Then, for any pair of sets of strategic bliss
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points x̂ and x̂′ produced by pairwise path through algorithm 1 and induced

(SMPE) σ and σ′ and ∀x ∈ X, E[d(p(x|σ))] = E[d(p(x|σ′))]. Moreover,

if conditions G1 and G2 hold strictly, marginal impact of (symmetry of G
preserving)

1. increase in δ

2. increase in ri compensated by decrease in rm

3. decrease in d(xi)

on E[d(p(x|σ))] is non-positive.

Proof. See appendix A1

Proposition 7 implies that average distance of p(x|σ) from the bliss point

of the median player is independent of the specific equilibrium from Proposi-

tion 5 considered. In addition, the proposition shows that marginal increase

in δ or ri and marginal decrease in d(xi) brings the policy proposed in any

such equilibrium closer to the bliss point of the median player. The key

driving force behind the result is the stronger incentive of all the players to

moderate and propose policies closer to xm. This manifest in the strategic

bliss points moving (weakly) closer to xm and is easily seen from the fact

that d(x̂i) = d(xi)(1 − 2δr) where r ∈ [0, 12) is the probability algorithm 1

used to compute x̂i.
24

To describe dynamics of the policies, denote by p(x|σ) = {p0, p1, . . .}
path of policies generated by play according to SMPE σ starting with status-

quo x, which we denote by p−1. Depending on whether we view p(x|σ) as

generated by deterministic sequence of proposers or not, it is sequence of

numbers or of random variables.

Proposition 8 (Policy dynamics with pairwise moderation). Assume G
induces pairwise moderation. Then, for any set of strategic bliss points x̂

produced by pairwise path through algorithm 1 and induced (SMPE) σ, for

∀x ∈ X and ∀t ∈ {0, 1, . . . , }, viewing p(x|σ) = {p0, p1, . . .} as deterministic

1. d(pt) ≤ d(pt−1)

2. either d(pt) = d(x̂i) for some i ∈ N or d(pt) = d(pt−1)

24 Proposition 7 requires conditions G1 and G2 to hold strictly in order to ensure that
marginal change of the model parameters preserves pairwise moderation inducing G.
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and viewing p(x|σ) = {p0, p1, . . .} as sequence of random variables

3. P[d(pt) > 0] = (1− rm)t+1 if x 6= xm

4. P[d(pt) = d(pt−1)] is non-decreasing in t

5. P[pt > xm|pt−1 6= xm] = P[pt < xm|pt−1 6= xm] = ra

Proof. See appendix A1

In words, Proposition 8 says that adopted policies over time move closer

to the bliss point of the median player xm. In every period, pt is either equal

to the strategic bliss point of some player, or its distance from xm equals

distance of the status-quo policy from xm. For pt to stay away from xm

only non-median players have to be proposing in all periods up to t, which

happens with probability (1− rm)t+1.

Part 4 of the proposition says that convergence of pt slows down over

time. With the status-quo policy approaching xm, increasing number of

players is constrained by the acceptance of the median player, cannot pro-

pose their strategic bliss point and propose, in period t, db(pt−1) or da(pt−1)

instead. Slower convergence, however, does not mean pt does not vary in

time. In fact, as long as the status-quo policy differs from xm, pt is as likely

to be above xm as it is likely to be below. These fluctuations around xm are

result of players in Na replacing players in Nb, or vice versa, in the proposer

role.

5 Equilibrium existence with X ⊆ R and n = 3

The goal of this section is to study in more detail equilibria in games with

three players. We construct SMPE for any G with n = 3 and arbitrary

r and x. The construction heavily relies on the simple proposal strategies

with strategic bliss points from algorithm 1, possibly with slight adjustment.

Throughout the section, let us, if d(x1) 6= d(x3), define e ∈ {1, 3} to be the

more extreme player and −e = {1, 3} \ {e} to be the less extreme player,

such that d(xe) > d(x−e).
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Definition 9 (Adjusted simple proposal strategies). Adjusted simple pure

stationary Markov proposal strategy of i ∈ N is

pai (x|x̂i, ~x) =

{
pi(x|x̂i) if x ∈ [db(~x), da(~x)]

pi(x|xi) if x /∈ [db(~x), da(~x)]

where x̂i is strategic bliss point of i and ~x is called point of adjustment.

Adjusted simple strategy of i ∈ N is denoted by ~σi = (x̂i, ~x).

Figure 2: Adjusted simple strategies

pi(x)

xdb(xi) xm xix̂idb(x̂i) ~xdb(~x)

xm

xi pi(x)

Figure 2 illustrates the adjusted simple proposal strategies from defi-

nition 9. These strategies resemble the unadjusted ones except that at ~x,

i switches from proposing policy x̂i to proposing policy da(x).25 The ad-

justment is necessary for SMPE construction in the case when the strategic

bliss point from algorithm 1 of e satisfies d(x̂e) < d(xe). This implies that

x̂−e = x−e and is due to the fact that even though e is the more extreme

player in terms of distance of her bliss point from xm, recognition proba-

bility of −e is large enough for e to have incentive to moderate to a larger

extent.

This in turn implies Se 6= ∅ as d(x̂e) < d(x−e) < d(xe). In words,

moving x away from xm, the first player to switch to the constant part of

her strategy is e, d(x̂e) far from xm, and the second player to switch is −e,
d(x−e) far from xm. At this point the continuation value functions of all the

players become constant and the dynamic utilities inherit shape of the stage

25 The figure is drawn for i ∈ Na. If i ∈ Nb the switch is to proposing policy db(x).
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utilities. Moving x further away from xm toward xe, Ue increases, implying

failure of condition S, and might reach xa such that Ue(x̂e|σ′) = Ue(xa|σ′)
where σ′ is induced by x̂ = {x̂e, x̂2, x̂−e}. Any further increase in Ue(x|σ′)
then implies that σ′ cannot constitute SMPE due to failure of condition N.

However, if we adjust the simple strategy of e, x̂e, and allow her to switch,

at xa, from proposing x̂e to proposing da(xa) if e ∈ Na or to db(xa) if e ∈ Nb,

the resulting ~σe = (x̂e, xa) will be best response to the proposal strategies of

the other players. That the profile of strategies σ′′ = (~σe, x̂2, x̂−e) generated

by replacing strategy of e in σ′ is SMPE is a matter of longer argument

that we leave for proofs of the propositions below. Heuristically, jump in

the policy e proposes further away from xm induces downward jumps in the

dynamic utilities of m and −e. For m, this has no impact on either her

optimal proposal strategy or A her voting strategy generates. For −e, for

status-quo xa she is on the constant part of her strategy proposing x̂−e = x−e

as d(x−e) < d(xa) < d(xe). The downward jump in U−e then only reinforces

optimality of x̂−e. Notice also that because xa is defined by Ue(x̂e|σ′) =

Ue(xa|σ′), it is intuitive that σ′′ will give rise to continuous Ue, despite the

discontinuity in the proposal strategy of e. What remains is to specify exact

location of the point of adjustment xa.

Definition 10 (Point of adjustment). For G with n = 3 and d(x1) 6= d(x3)

define point of adjustment xa as

xa =


xe + (m− e)

√
4δr−ed(xe)2 − δr−e

1−δr−e (d(xe) + d(x−e))2 if δr−e <
1
2

xe + (m− e)
√

1
1−δr−ed(xe)2 − δr−e

1−δr−e (d(xe) + d(x−e))2 if δr−e ≥ 1
2

and note xa ∈ C, xa = xe or xa < xe as d(xe) < d(x−e)Te, d(xe) = d(x−e)Te

or d(xe) > d(x−e)Te where

Te =


1

2
√

1−δr−e−1
if δr−e <

1
2

√
δr−e

1−
√
δr−e

if δr−e ≥ 1
2 .

We explained above that the need for the adjusted simple proposal strate-

gies arises in cases when −e is very likely to propose which creates strong

incentives for e to moderate. When e is the player who is more likely to

propose, then algorithm 1 produces x̂e = xe as −e has stronger incentive
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to moderate relative to e, due to both d(xe) > d(x−e) and re > r−e. In

this case x̂ from algorithm 1 induces SMPE σ without need for further ad-

justments. Similar lack of complications arises when d(x1) = d(x3) as the

incentives to moderate are determined purely by r1 and r3. Following defi-

nition formalizes when the need for adjustment arises and allows us to state

the two propositions below.

Definition 11 (Condition E). G with n = 3 satisfies condition E if and only

if, whenever Ae holds, then Be holds, where

Ae : d(x1) 6= d(x3) ∧ d(xe)(1− 2δr−e) ≤ d(x−e)(1− 2δre)

Be : d(xe) ≤ d(x−e)Te.
(E)

Proposition 9. Assume condition E holds in G with n = 3. Then

1. there exists SMPE in simple proposal strategies with x̂ produced by

algorithm 1

2. there exists SMPE in adjusted simple proposal strategies if and only if,

in condition E, Ae holds and Be holds with equality; it is characterized

by x̂ from algorithm 1 (dropping e in step 1, if given choice) and

~σe = (x̂e, xe)

3. if and only if d(x1) = d(x3) or d(xe)(1 − 2δr−e) ≥ d(x−e)(1 − 2δre),

x̂ produced by algorithm 1 (dropping −e in step 1, if given choice)

induces U1 that is single peaked on {x ∈ X|x ≤ xm} (on X if δr1 ≤ 1
2)

and U3 that is single peaked on {x ∈ X|x ≥ xm} (on X if δr3 ≤ 1
2)

Proof. See appendix A1

Proposition 10. Assume condition E fails in G with n = 3. Then

1. there exists SMPE in adjusted simple proposal strategies with x̂ from

algorithm 1 (dropping e in step 1, if given choice) and ~σe = (x̂e, xa)

2. if and only if d(x1)(1 − 2δr3) = d(x3)(1 − 2δr1), there exists SMPE

in simple proposal strategies with x̂ produced by algorithm 1 (dropping

−e in step 1)

Proof. See appendix A1
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Parts 1 of the two propositions jointly imply existence of SMPE for any

three-player G. It is constructed using either the simple strategies or their

adjusted version if necessary.

Corollary 1. There exists SMPE in G with n = 3.

We know from Proposition 2 that whenever SMPE in simple strategies

exists, algorithm 1 produces the set of strategic bliss points that supports it.

For G with n = 3, algorithm 1 produces two distinct sets of strategic bliss

points if and only if δ ∈ (0, 1) and d(x1)(1−2δr3) = d(x3)(1−2δr1). If in ad-

dition condition E holds, there exist two SMPE in simple strategies. Failure

of any of these three conditions implies that SMPE in simple strategies is

either unique or fails to exist. Because d(x1)(1−2δr3) = d(x3)(1−2δr1) fails

upon perturbation of x or r, the multiplicity of SMPE in simple strategies

is non-generic.

Corollary 2. If it exists, SMPE in simple proposal strategies is essentially

unique.

6 Equilibria with X ⊆ Rn′

This section extends the dynamic spatial legislative bargaining model to

multiple dimensions. The policy space is X ⊆ Rn′ . Any element of X,

policy ~p, status-quo ~x or i’s bliss point ~xi, is vector in Rn′ with components

denoted by superscripts, such that ~x = (x1, . . . , xn
′
) ∈ X. When X ( Rn′ ,

then we require X to be the Cartesian product X =
∏n′

j=1Xj where each

Xj ⊆ R is compact convex interval that is symmetric around xjm (m defined

below) and includes both mini∈N {xji} and maxi∈N {xji}. Stage utility of

i ∈ N from policy ~p is ui(~p ) = −
∑n′

j=1(p
j − xji )

2 where xji is the most

preferred policy of i on dimension j. Using || · || to denote Euclidean norm

(distance), ui(~p ) = −||~p− ~xi||2.26

We denote by m player with bliss point ~xm in the majority core. In or-

der for the majority core to exist we assume that the Plott (1967) condition

holds. As is well known, for odd number of players this condition is both suf-

ficient and necessary (Austen-Smith and Banks, 2000) for the core existence

26 Rest of the model extends naturally and we refrain from (re)defining the proposal
strategies, value functions, dynamic utilities, social acceptance correspondence and SMPE
for space considerations. We keep using x = {~x1, . . . , ~xn} for the set of bliss points and x̂
for the set of strategic bliss points as well as G = 〈n,x, r, δ,X〉.
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and implies that it consists of a single alternative, ~xm. The Plott (1967) con-

dition states that for any i ∈ N \ {m}, there exists ir ∈ N \ {m, i} such that

α~xi+(1−α)~xir = ~xm for some α ∈ (0, 1). That is, for any player there exists

another player such that line connecting their bliss points passes through

~xm. This special arrangement of bliss points is also called radial symmetry

and that is why, for any i ∈ N \ {m}, we denote by ir ∈ N \ {m, i} player

with bliss point on the line connecting ~xi and ~xm. For simplicity, we assume

that exactly three players, i, m and ir, lie on each such line and, without loss

of generality, set ~xm to be an origin of X such that ~xm = (0, . . . , 0) = 0.27

For any i ∈ N \ {m} and j ∈ N \ {m}, we denote by cos(i, j) =
~x′i~xj

||~xi||·||~xj ||
angle between ~xi and ~xj (on the plane determined by ~xi, ~xj and ~xm).

Definition 12 (Orthogonal strongly symmetric G). G is orthogonal strongly

symmetric if and only if ri = 1
n for ∀i ∈ N , ||~xi|| = b > 0 for ∀i ∈ N \ {m}

and cos(i, j) = 0 for ∀i ∈ N \ {m} and ∀j ∈ N \ {i, ir,m}.

Definition 13 (Equiangular G on circle). G is equiangular on a circle if

and only if ri = 1
n for ∀i ∈ N , ||~xi|| = b > 0 for ∀i ∈ N \ {m}, ~x1 = (b, 0)

and cos(i, 1) = cos ((i− 1)α) for ∀i ∈ N \ {n} where α = 2π
n−1 .

6.1 Simple strategies, strategic bliss points

Dynamic median voter theorem from Proposition 1 extends to multi-dimen-

sional policy space and again implies that the social acceptance sets A are

determined by median’s expected utility.

Proposition 11 (Dynamic median voter theorem for X ⊆ Rn′).
For any (not necessarily SMPE) profile of pure stationary Markov strategies

σ̂, with implied voting such that, for ∀i ∈ N , i ∈ N votes for proposed ~p ∈ X
against status-quo ~x ∈ X if and only if Ui(~p |σ̂) ≥ Ui(~x |σ̂), ~p is accepted if

and only if Um(~p |σ̂) ≥ Um(~x |σ̂).

Proof. See appendix A1

27 The model is shift and rotation invariant, hence the normalization ~xm = 0. By the
same argument, setting ~x1 to lie on the coordinate axis of R2 in the examples below entails
no loss of generality.
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Definition 14 (Simple proposal strategies). Simple pure stationary Markov

proposal strategy of i ∈ N is

~pi(~x |k̂i) = ~xi ·min

{
k̂i,
||~x||
||~xi||

}
where k̂i~xi is strategic bliss point of i with k̂i ≥ 0.

With strategic bliss point of i, k̂i~xi, fully determined by k̂i and due

to minimal chance of confusion, we also call k̂i strategic bliss point. Set of

strategic bliss points then refers to x̂ = {k̂1~x1, . . . , k̂n~xn} or k̂ = {k̂1, . . . , k̂n}.
Given x̂ or k̂ profile of simple proposal (and implied voting) strategies is

σ = (~p1, . . . , ~pn). Due to ~pi being fully determined by k̂i~xi or k̂i, we also call

k̂i~xi or k̂i proposal strategy of i and x̂ or k̂ profile of strategies.

The simple strategies in Rn′ are analogous to the simple strategies in R.

For any status-quo ~x close to the bliss point of the median player, ~xm = 0,

player i proposes policy on the ray starting at ~xm and passing through ~xi,

i-ray for short. Distance of the proposed policy from ~xm is equal to the

distance of the status-quo ~x from ~xm. For any status-quo ~x far away from

~xm, player i still proposes policy on the i-ray, but at the distance k̂i||~xi||
from ~xm. From definition 14, in this case k̂i||~xi|| ≤ ||~x||. That is, player i

moderates and proposes k̂i~xi instead of proposing ~xi
||~x||
||~xi|| , which would be a

policy at the distance ||~x|| from ~xm. Strategic bliss point k̂i is then relative

to ||~xi|| distance at which i switches from proposing ~xi
||~x||
||~xi|| to proposing

k̂i~xi, distance of status-quo at which i starts moderating.

Given k̂ we need to define several objects needed in the analysis below.

By ND = {0, k̂1||~x1||, . . . , k̂n||~xn||} we denote the set of distances such that,

for any x ∈ ND, there exists at least one ~pi that is not differentiable, along

i-ray, with respect to x at x.28 D = R≥0 \ ND denotes the complement

of ND, the set of distances such that all the strategies are differentiable.

For i ∈ N \ {m}, NDi = {x/||~xi|| |x ∈ ND} is the set of elements in ND
rescaled by ||~xi||.

Denote by ~p ′i (x) = ∂
∂x

[
~pi(x

~xi
||~xi||)

]
derivative of ~pi along the i-ray and

note ~p ′i (x) 6= 0 for x ∈ (0, k̂i||~xi||) and ~p ′i (x) = 0 for x > k̂i||~xi||. When

28 This is not entirely precise. If k̂ = 0 all ~pi are constant and hence differentiable
on X. ND should be understood as the set of distances at which some ~pi might not be
differentiable along the i-ray. We are concerned with taking derivatives when these do not
exist, so this is a mere imprecision in the label for ND.
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i = m, there is no i-ray and, as a convention, we choose arbitrary i-ray with

i ∈ N \ {m}, which implies ~p ′m(x) = 0.29 For ∀x ∈ D, define C(x) = {i ∈
N |~p ′i (x) = 0} and NC(x) = {i ∈ N |~p ′i (x) 6= 0}. C(x) and NC(x) are sets of

players who, at distance x from the origin, are on constant and non-constant

part of ~pi (judging by its derivative) respectively. Naturally, C(x)∪NC(x) =

N for ∀x ∈ D. Despite C being a set of players, we define one-sided limits

C(x+) = {i ∈ N |~p ′i (x+) = 0}, for ∀x ∈ ND, and C(x−) = {i ∈ N |~p ′i (x−) =

0}, for ∀x ∈ ND\{0}. One-sided limits of NC(x), NC(x−) and NC(x+) are

defined similarly.30 For i ∈ N \ {m}, define NCi(x) = NC(x||~xi||) for any

x ≥ 0 such that x||~xi|| ∈ D. One-sided limits of NCi, NCi(x−) at any x > 0

and NCi(x+) at any x ≥ 0, are defined using one-sided limits of NC.31

For ∀x ∈ D define rnc(x) =
∑

i∈NC(x) ri to be the sum of recognition

probabilities of players on non-constant part of their strategy, at distance

x from the origin. rnc(x) is undefined at x ∈ ND but possesses one-sided

limits at these points (defined using one-sided limits of NC).
Finally, for ∀i ∈ N \ {m} define possibly empty sets

Si = NDi ∩ (k̂i, 1)

Li = {k ≥ 0| ∂∂k [Ui(k~xi)] = 0 ∧ k||~xi|| ∈ D}

Ni = ((NDi ∪ Li) ∩ (k̂i, 1)) ∪ {k̂i, 1}

(7)

with elements of Ni ordered in increasing order. Si is the set points in the

(k̂i, 1) interval at which ~pj is not differentiable, along j-ray, for some j ∈ N .

Ni is similar set of points adding points of local maxima of Ui along the

i-ray, Li, and {k̂i, 1}. We are well aware that all ND, NDi, D, C, NC,
NCi, rnc, Si, Li and Ni are defined relative to k̂ and hence relative to σ.

We suppress the dependence of these objects on σ only when the chance of

confusion is minimal.

Lemma 8 (Properties of Vi and Ui induced by k̂). For any k̂ with k̂i ≥ 0

for ∀i ∈ N \{m} and k̂m = 0 and induced profile of strategies σ, for ∀i ∈ N ,

29 To avoid unnecessary repetition and due to minimal chance of confusion, we use
similar convention for any expression involving expansion or derivative of Ui or Vi along
i-ray when i = m. It is taken to mean expansion or derivative along arbitrary i-ray with
i ∈ N \ {m}, i.e. Um(k~xi) or Vm(k~xi) as k varies or derivative with respect to it.

30 NC and C are both piecewise ‘constant’ on intervals determined by ND and hence,
for ∀x ∈ D, C(x) = C(x+) = C(x−) and NC(x) = NC(x+) = NC(x−).

31 Difference between NC and NCi is their domain. The former has distance as its
domain, the latter has relative to ||~xi|| as its domain.
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1. Vi(~x |σ) = Vi(~y |σ) for ∀~x ∈ X and ∀~y ∈ X with ||~x|| = ||~y||

2. Ui(k~xi |σ) > Ui(~y |σ), if i ∈ N \ {m}, for any k ≥ 0 and ~y ∈ X such

that k||~xi|| = ||~y|| but k~xi 6= ~y

3. Ui is continuous on X

4. ∂2

∂2k
[Ui(k~xi |σ)] < 0 for ∀k ≥ 0 such that k||~xi|| ∈ D(σ)

5. Um(~x |σ) > Um(~y |σ) for ∀~x ∈ X, ∀~y ∈ X such that ||~x|| < ||~y||

6. A(~x |σ) = {~p ∈ X| ||~p|| ≤ ||~x||} for ∀~x ∈ X

Proof. See appendix A1

Lemma 8 is close analog of Lemma 2. Its most important implication is

the shape of social acceptance correspondence. For any status-quo ~x ∈ X,

the set of accepted policies, when proposed, is the set of policies weakly

closer to ~xm relative to ~x. As a result, any proposal generated by simple

strategy based on k̂ that satisfies the requirement of the lemma belongs to

the social acceptance set induced by k̂. Furthermore, part 2 of the lemma

implies that any dynamic utility maximizing policy, for player i, has to lie

on i-ray. This is consequence of the value functions being constant on the

hypersphere of given radius and the stage utility, on the same hypersphere,

having maximum on the i-ray. Last thing we need in the construction is the

way to determine the strategic bliss points. This is what algorithm 2 does.

Algorithm 2 (Strategic bliss points with X ⊆ Rn′).

step 0 Set k̂m = 0 and P1 = N \ {m}

step t For i ∈ Pt compute

k̂i,t = 1− δ
∑
j∈Pt

rj [1− cos(i, j)]

Define Rt = {i ∈ Pt|k̂i,t ≤ 0}
If Rt = ∅, select one j ∈ arg mini∈Pt k̂i,t||~xi||, set k̂j = k̂j,t

If Rt 6= ∅, select one j ∈ Rt, set k̂j = 0

Set Pt+1 = Pt \ {j} and if Pt+1 6= ∅, proceed to step t+ 1
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The way in which algorithm 2 derives the strategic bliss points is closely

related to algorithm 1. With one-dimensional policy space opponents of

player i are players with bliss points on the opposite side of median’s bliss

point. From algorithm 1, strength of player i’s incentive to moderate, driven

by presence of her opponents, is 2δr where r is the probability of recognition

of the opponents.

With multi-dimensional policy space, players other than player i are her

opponents to a certain degree, captured by the [1−cos(i, j)] term. For ir, i’s

strength of incentive to moderate is 2δrir as [1− cos(i, j)] = [1− cosπ] = 2.

Players with bliss points orthogonally located relative to ~xi add half as much

to the incentive to moderate as [1 − cos(i, j)] = [1 − cos π2 ] = 1. Finally,

players on the same i-ray, namely i herself, add nothing to the incentive to

moderate as [1− cos(i, j)] = [1− cos 0] = 0.

Example 9 (Simplest example in R2). Consider G with n = 5, ri = 1
n for

∀i ∈ N , δ = 0.9 and the following bliss points

player 1 2 3 4 5

x1i 2 -2 0 0 0

x2i 0 0 2 -2 0

In step 1 the algorithm computes k̂i,1 = 0.28 for i ∈ {1, . . . , 4}. Dropping

player 1, in step 2 the algorithm computes k̂i,2 = 0.46 for i ∈ {3, 4}. Drop-

ping player 3, in step 3 the algorithm computes k̂i,3 = 0.82 for i ∈ {2, 4}.
Finally, dropping player 2, in step 4 the algorithm computes k̂i,4 = 1 for

i ∈ {4}. The choices regarding which players to drop produces

player 1 2 3 4 5

k̂i 0.28 0.82 0.46 1 0

The algorithm allowed for four players to be dropped in step 1 and for two

in steps 2 and 3. Since the number of alternatives in steps 2 and 3 does not

depend on the choice in the earlier steps, there are 4 ·2 ·2 = 16 different sets

of strategic bliss points the algorithm can produce.

6.2 Necessary and sufficient conditions

Any set of strategic bliss points k̂ from algorithm 2 induces profile of strate-

gies σ. To check that σ constitutes SMPE we define following two conditions
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analogous to conditions S and N from the one-dimensional model that allow

us to state the proposition that follows.

Definition 15 (Condition S′, sufficient). Set of strategic bliss points k̂ from

algorithm 2 and induced profile of strategies σ satisfies condition S′ if and

only if, for ∀i ∈ N \ {m} and ∀x ∈ Si(σ),

1− x− δ
∑

j∈NCi(x+|σ)

rj [1− cos(i, j)] ≤ 0. (S′)

Definition 16 (Condition N′, necessary and sufficient). Set of strategic

bliss points k̂ from algorithm 2 and induced profile of strategies σ satisfies

condition N′ if and only if, for ∀i ∈ N \{m} and denoting elements of Ni(σ)

by {z0, z1, . . .},

J∑
j=1

[
Ti(x|σ)

]z+j−1

z−j

≥ 0 for ∀J ∈ {1, . . . , |Ni(σ)|} (N′)

where

Ti(x|σ) = − 2||~xi||2

1− δ
∑

j∈NCi(x|σ) rj

[
x2

2
− ci(x|σ)x

]
ci(x|σ) = 1− δ

∑
j∈NCi(x|σ)

rj [1− cos(i, j)].

Proposition 12 (SMPE under S′ and N′ conditions). Set of strategic bliss

points k̂ from algorithm 2 and induced profile of strategies σ constitutes

SMPE

1. if k̂ satisfies condition S′

2. if and only if k̂ satisfies condition N′

Proof. See appendix A1

The reason why both conditions S′ and N′ guarantee that profile of strate-

gies σ induced by given set of strategic bliss points k̂ constitutes SMPE is

analogous to the one-dimensional model. By Lemma 8 it is sufficient to

focus on the shape of dynamic utility of player i along the i-ray, that is on

Ui(k~xi |σ) as k ≥ 0 varies. Condition S′ then checks that at any point in

(k̂i, 1) where Ui is not differentiable, right derivative of Ui is non-positive.
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By piecewise strict concavity of Ui this implies that Ui is decreasing as a

function of k on (k̂i, 1). Best response of player i is then to propose k̂i~xi.

Condition S′ focuses only on the (k̂i, 1) interval due to Ui increasing on [0, k̂i]

and decreasing on [1,+∞). The former is by construction and follows from

the way algorithm 2 determines k̂i while the latter holds for any k̂.

Condition S′ is stronger than necessary. When it fails, σ possibly still

constitutes SMPE when condition N′ holds. The latter condition verifies

that Ui(k̂i~xi |σ) ≥ Ui(k~xi |σ) for ∀k ≥ k̂i. It only looks at a finite set of

points using the fact that Ui is piecewise quadratic and Ui(k~xi)−Ui(l~xi) =[∫
∂
∂kUi(k~xi)

]k
l
.

Both conditions guarantee existence of SMPE and only need to be checked

at a finite set of points. Their disadvantage is that they apply to the strategic

bliss points from algorithm 2. Relating S′ and N′ to the parameters defining

G is non-trivial due to complicated mapping from n, x, r and δ to x̂. That

is why in the next two subsections we look at orthogonal strongly symmet-

ric and equiangular games. Putting enough structure on the parameters

defining G will allow us to relate (mainly) condition S to these parameters.

Before proceeding, we provide several example. Example 9 (continued)

below illustrates that despite this complication verification of the conditions

can be straightforward. Verification of the conditions in the subsequent

example 10 is more involved, but still possible due their focus on finite set

of points. Finally, examples 11 and 12 show that verification of the two

conditions is possible even in partially parameterized G.

Example 9 (continued). With x = {(2, 0), (−2, 0), (0, 2), (0,−2), (0, 0)} and

k̂ = {0.28, 0.82, 0.46, 1, 0}, ND = {0, 0.56, 0.92, 1.64, 2} and for i ∈ N \ {m}
NDi = {0, 0.28, 0.46, 0.82, 1}. Set of players on non-constant part of their

strategy is

NC(x) =



{1, 2, 3, 4} for x ∈ (0, 0.56)

{2, 3, 4} for x ∈ (0.56, 0.92)

{2, 4} for x ∈ (0.92, 1.64)

{4} for x ∈ (1.64, 2)

∅ for x ∈ (2,∞)

which can be used to derive NCi for i ∈ N \{m} from NCi(x) = NC(2x). To

verify condition S′, Si = ∅ for i ∈ {2, 4}, S1 = {0.46, 0.82} and S3 = {0.82}.
Using NCi, for i ∈ {1, 3} NCi(x+) = {2, 4} for x = 0.46 and NCi(x+) = {4}
for x = 0.82. From here it is matter of simple algebra to verify that condition
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S′ holds. Results we prove in the following subsection also imply that any of

the 16 different sets of strategic bliss points algorithm 2 can produce for this

example satisfy condition S′ and also that we could have used any δ = (0, 1)

in this example without changing its results. This follows from the fact that

the current G is orthogonal strongly symmetric.

Example 10 (Duggan and Kalandrakis (2011) parametrization). Consider

G with n = 9, ri = 1
n for ∀i ∈ N , δ = 0.7 and bliss points

player 1 2 3 4 5 6 7 8 9

x1i -0.8 0.3 -0.2 0.9 0.1 -0.15 0.3 -0.9 0

x2i 0 0 0.2 -0.9 0.6 -0.9 0.2 -0.6 0

Algorithm 2 produces a unique set of bliss points (numbers rounded)

player 1 2 3 4 5 6 7 8 9

k̂i 0.79 0.51 0.38 1 0.50 0.94 0.48 0.91 0

for which conditions S′ and N′ hold.

Example 11 (Non-orthogonal players in R2). Consider G with n = 5, ri =
1
n for ∀i ∈ N , δ ∈ (0, 1) and, for α ∈ (0, π2 ), the following bliss points

player 1 2 3 4 5

x1i 1 -1 cosα − cosα 0

x2i 0 0 sinα − sinα 0

Algorithm 2 in step 1 computes k̂i,1 = 1 − δ 45 for i ∈ N \ {m}. Dropping

player 1 gives k̂1 = 1 − δ 45 . In step 2 the algorithm drops player 3 with

k̂3 = 1− δ
5(3− cos (π − α)). In step 3 the algorithm computes k̂2,3 = k̂4,3 =

1 − δ
5(1 − cosα) and dropping player 4 produces k̂4 = 1 − δ

5(1 − cosα) and

k̂2 = 1.

With these strategic bliss points Si = ∅ for i ∈ {2, 4}, S1 = {k̂3, k̂4}
and S3 = {k̂4}. Computing NC is straightforward using the fact that the

algorithm dropped players in the order 1, 3, 4 and 2. Hence, for i ∈ N \{m},
NCi(x+) = {2, 4} for x = k̂3 and NCi(x+) = {2} for x = k̂4. From here,

it is matter of simple algebra confirming that condition S′ holds for any

δ ∈ (0, 1) and α ∈ (0, π2 ).
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Had we dropped player 2 in step 3 of the algorithm, we would have S1 =

{k̂3, k̂2} and S3 = {k̂2} with k̂2 = 1− δ
5(1−cosα), that is with the same value

as before, and NCi(x+) = {4} for x = k̂2. Condition S′ would still hold.

Had we dropped any other player than player 1 in step 1 of the algorithm,

we would face the same duplicity but condition S′ would remain to hold.

Example 12 (Players at varying distances in R2). Consider G with n = 5,

ri = 1
n for ∀i ∈ N , bliss points

player 1 2 3 4 5

x1i dx −dx 0 0 0

x2i 0 0 dy −dy 0

where dx
dy

= dr > 1 and δ ≤ 5(dr−1)
3dr−2 . Note that the assumption on δ is not

binding if dr ≥ 3
2 . Algorithm 2 in step 1 computes, k̂i,1 = 1 − δ 45 for i ∈

N \ {m} and gives option of dropping players 3 and 4 due to k̂i,1dy < k̂j,1dx

for any i ∈ {3, 4} and j ∈ {1, 2}. Dropping player 4 produces k̂4 = 1−δ 45 . In

step 2 the algorithm computes k̂3,2 = 1− δ 25 and k̂i,2 = 1− δ 35 for i ∈ {1, 2},
drops player 3 due to k̂3,2dy ≤ k̂i,2dx for i ∈ {1, 2} by assumption on δ, and

produces k̂3 = 1− δ 25 . Steps 3 and 4 then produce, dropping player 1 in the

former, k̂1 = 1− δ 25 and k̂2 = 1.

With these strategic bliss points Si = ∅ for i ∈ {1, 2}, S4 = {k̂3, k̂1dr}
and S3 = {k̂1dr}. Computing NCi for i ∈ {3, 4} gives NCi(x+) = {1, 2} for

x = k̂3 and NCi(x+) = {2} for x = k̂1dr. From here, it is matter of simple

algebra confirming that condition S′ holds. Similar argument shows that it

holds for k̂ produced by alternative choices of players to drop in steps 1 and

3 of the algorithm.

6.3 Orthogonal strongly symmetric games

Recall that G is orthogonal strongly symmetric if the recognition probabil-

ities of all the players are equal, for every player i ∈ N \ {m} there exists

exactly one player ir with bliss point on the opposite side of ~xm = 0 relative

to ~xi and for every other player j ∈ N \ {i, ir,m} cos(i, j) = 0. This implies

that policy space X in G with n players is X ⊆ R
n−1
2 . G in example 9

satisfies this definition while G in examples 10 and 11 do not.

Proposition 13 (SMPE in orthogonal strongly symmetric G). Assume G
is orthogonal strongly symmetric. Then

40



1. if δ ∈ (0, 1), there exist 2(n−1)/2
(
n−1
2 !
)2

distinct sets of strategic bliss

points k̂ produced by algorithm 2, if δ = 0, k̂ = 1

2. σ induced by any of these sets of strategic bliss points constitutes SMPE

3. σ induced by any of these sets of strategic bliss points satisfies condition

S′ and, for i ∈ N , Ui(k~xi |σ) is single peaked (in k) on R≥0

Proof. See appendix A1

6.4 Equiangular games on a circle

We have defined equiangular G to be in R2 with the bliss points of all the

players the same distance from ~xm and arranged such that the angle between

bliss points of any adjacent players is α = 2π
n−1 . The players are indexed such

that ~x1 = (b, 0) and ~xi are arranged, with increasing i, counter-clockwise on

a circle of radius b, which implies m = n.

Proposition 14 (SMPE in equiangular G). Assume G is equiangular on a

circle with radius b > 0. Then

1. if δ ∈ (0, 1), there exist 2(n−3)(n − 1) distinct sets of strategic bliss

points k̂ produced by algorithm 2, if δ = 0, k̂ = 1

2. σ induced by any of these sets of strategic bliss points constitutes SMPE

3. σ induced by any of these sets of strategic bliss points satisfies condition

S′ and, for i ∈ N , Ui(k~xi |σ) is single peaked (in k) on R≥0

4. limn→∞ k̂i = 1−δ+δ
[γ−sin γ

2π

]
for i algorithm 2 drops after γ

2π fraction

of players has been already dropped

Proof. See appendix A1

The key insight that allows us to prove Proposition 14 is special structure

of the strategic bliss points algorithm 2 produces for any equiangular G. In

step 1 the algorithm gives option to drop players {1, . . . , n − 1}. Dropping

player 1, the algorithm in the next step gives option to drop players {2, n−1}.
Intuitively, dropping player 1 in step 1 means opponent of 1r moderates

weakening considerably incentives of 1r to do so. On the other hand dropped

player 1 is closely allied with players 2 and n − 1 for whom the incentives

to moderate change only slightly as a result of player 1 being dropped.
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Dropping player n−1, the players to drop in the following step are {2, n−2}
and so on. In other words, if Pt is the set of players still in the algorithm

in step t ≥ 2, set of players that can be dropped is {minPt,maxPt}. This

puts just enough structure on the resulting set of strategic bliss points for

us to prove that the induced σ constitutes SMPE.

Despite the fact that the algorithm can produce large number of distinct

sets of strategic bliss points, certain systematic choices regarding which play-

ers to drop generate easy to describe k̂. Figure 3 shows two such k̂ in the

limit as δ → 1 and n → ∞. Panel 3a shows k̂ generated by systemati-

cally choosing minPt as the player to be dropped. Panel 3b then shows k̂

generated by alternatively choosing minPt and maxPt as the players to be

dropped.32

Figure 3: Strategic bliss points in equiangular G
limit as n→∞ and δ → 1

(a) Counter-clockwise dropping (b) Alternating dropping

7 Conclusion

We hope results presented in this paper will foster further research into

dynamic spatial legislative bargaining, which we feel has been, unjustifiably,

lagging behind the study of the distributive dynamic models. Our aim,

32 In polar coordinates, panel 3a can be expressed as θ−sin θ
2π

for θ ∈ [0, 2π] and the upper
branch of panel 3b as θ−sin θ cos θ

π
for θ ∈ [0, π]. See proof of Proposition 14 in appendix

A1 for details.
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in addition to providing insights and techniques for studying the spatial

environments, was to convey a message that structure of equilibria in these

models is simple and intuitive, provided one has resolved the associated

formal difficulties. We hope to have provided such resolution.

In order for the dynamic, spatial or distributive, legislative bargaining

models to find stable place in political economics, they need to provide novel

insights into and further our understanding of policy determination relative

to their static precursors. For the most part we have failed to stress and

comment on behaviour of policies generated by equilibrium play, focusing

instead on existence of equilibria and relying on reader’s ingenuity. Common

themes emerging from our analysis are convergence to the policy preferred

by the median player, on the convergence path alternation of policies around

this policy and asymmetric tendency for moderation towards this policy.

The first theme implies, seemingly in our opinion, that study of the

dynamic models does not warrant the increased complexity of the analysis; in

static models median’s optimal policy is typically strong point of attraction.

To dispute this claim, we have shown that the convergence phase can be

arbitrarily long. Alternation and moderation along the convergence path,

predictions about evolution of policies, are then distinctive to the dynamic

models.

Moderation and asymmetric incentive to do so are likewise specific to the

dynamic models. These observation can, for example, explain why in the US

the Democratic party is sometimes referred to as ‘the party of the people’

while the Republican party bears ‘the grand old party’ moniker. Taking

symmetric three-player dynamic bargaining model studied in section 4, as

the probability of recognition of the median player vanishes, we approach a

model with two parties proposing policies subject to approval by the median,

who is devoid of any proposal power. Re-interpreting the model as one with

electorate and two parties, equilibrium in this model will have exactly one

of the parties moderating. If, in addition, the parties become arbitrarily

patient, the moderating party will propose policies that almost coincide

with the most preferred policy of the electorate, despite the parties being

completely symmetric.

Wider use of dynamic bargaining models requires deeper formal under-

standing of their properties and large(r) set of existing results. In this respect

our analysis, we feel, opens more questions than it answers. Our approach
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to equilibrium construction fails when the conditions N and N′ fail. Exis-

tence and properties of equilibria when the conditions fail thus remain an

open question. The fact that the adjusted simple strategies can be used

to establish equilibrium existence for three-player games strongly suggests

that similar approach could prove fruitful even when the number of players

is larger. We have extensively investigated this possibility, but so far failed

to prove the desired result. Another open question we leave for further work

is closer link between the necessary conditions for existence of equilibrium in

simple strategies and parameters of a game studied. We have provided this

link for symmetric one-dimensional games and two highly restricted classes

of multi-dimensional games, clearly leaving scope for future work.

The equilibrium construction we provide is in pure proposal strategies,

something we view in positive light. Nevertheless, more general models

might require, in order for the equilibria to exist, use of mixed strategies.

From Kalandrakis (2012) we know mixed strategy equilibria exist in three-

player, using our terminology, strongly symmetric games (the first adjective

is most likely not needed for his result) and posses interesting properties.

Whether mixing can be used to establish general existence result in dynamic

spatial legislative bargaining model remains an open question.

Finally, our contribution heavily relies on the existence of unique player

who is decisive for acceptance of any policy, on the existence of median

player. Quadratic utilities in the one-dimensional setting and Euclidean

utilities along with radial symmetry assumption in the multi-dimensional

setting ensure the median exists, raising the natural question about the

effect of its nonexistence, when, as an example, alternative utility functions

are used or the radial symmetry fails and the existence of median is either not

guaranteed or is known to fail. As a result, we feel our analysis should be seen

as stimulus for investigation of the effects of these alternative assumptions,

not as an end point in itself.
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A1 Proofs

A1.1 Proof of Proposition 1

The proposition is an implication of Banks and Duggan (2006b). We present

full proof in order to demonstrate dependence of the result on the quadratic

utilities used. The key fact we will use is that for any random variable z with

mean µz and variance σ2z and for quadratic utility with bliss point xi, we have

E[−(z−xi)2] = −[σ2z +(µz−xi)2]. Note also that ∂
∂xi

[
−[σ2z + (µz − xi)2]

]
=

2(µz − xi), which is linear in xi.

Now fix any profile of pure stationary Markov strategies σ̂. Consider

two policies p0 and p′0 generating stochastic sequence, via σ̂, of policies

p = {p0, p1, . . .} and p′ = {p′0, p′1, . . .} respectively. Utility of player i from

voting either for p0 or p′0 is

Ui(p0|σ̂) = E

[ ∞∑
t=0

−δt(pt − xi)2
]

Ui(p
′
0|σ̂) = E

[ ∞∑
t=0

−δt(p′t − xi)2
]
. (A1)

Differentiating the difference in utility from the two policies with respect to

xi gives

∂[Ui(p0|σ̂)− Ui(p′0|σ̂)]

∂xi
= E

[
2

∞∑
t=0

−δt(p′t − pt)

]
(A2)

which is independent of xi and hence Ui(p0|σ̂)− Ui(p′0|σ̂) is linear in xi.

Now assume Um(p0|σ̂) ≥ Um(p′0|σ̂). Then Ui(p0|σ̂) ≥ Ui(p′0|σ̂) either for

∀i ∈ Na or ∀i ∈ Nb and p0 is accepted. Conversely, if Um(p0|σ̂) < Um(p′0|σ̂),

then Ui(p0|σ̂) < Ui(p
′
0|σ̂) either for ∀i ∈ Na or ∀i ∈ Nb and p0 is rejected.

This implies that p0 is accepted if and only if Um(p0|σ̂) ≥ Um(p′0|σ̂), that is,

when the median player (weakly) prefers p0 to p′0. �
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A1.2 Proof of Lemma 1

By Proposition 1, for any profile of strategies σ̂, proposal p ∈ X is accepted

under status-quo x ∈ X if and only if m votes for p. Because m can enforce

xm as an outcome in any future period by rejecting any proposal p 6= xm

when status-quo is xm, for any SMPE σ̂ we have Vm(xm|σ̂) = 0. This

implies Um(xm|σ̂) > Um(x|σ̂) for ∀x ∈ X \ {xm} and, by Proposition 1,

A(xm|σ̂) = {xm}. Any SMPE σ̂ thus has to satisfy p̂i(xm) = xm for ∀i ∈ N ,

or, in terms of the simple strategies, pi(xm|x̂i) = xm for ∀i ∈ N , which

rewrites as x̂i ≥ xm for ∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm. �

A1.3 Proof of Lemma 2

To see part 1, any simple strategy pi with any bliss point x̂i ∈ R satisfies

pi(db(x)|x̂i) = pi(da(x)|x̂i) for ∀x ∈ X. The claim then follows from (2).33

Part 2 follows easily from the symmetry of Vi for ∀i ∈ N about xm and

asymmetry of the stage utilities for ∀i ∈ N \ {m} and symmetry of um.

To prove part 3, continuity of the dynamic utilities Ui on X, fix x̂ with

x̂i ≥ xm for ∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm and induced profile

of strategies σ. As Ui(x|σ) = ui(x) + δVi(x|σ), we need to prove the contin-

uation value functions Vi are continuous. From pi(x|x̂i) ∈ {db(x), da(x)} for

any i ∈ NC(x|σ) and x ∈ D(σ) and from symmetry of Vi about xm, we can

write (2) for ∀x ∈ D(σ)

Vi(x|σ) =

∑
j∈N rjui(pj(x|x̂j)) + δ

∑
j∈C(x|σ) rjVi(pj(x|x̂j)|σ)

1− δrnc(x|σ)
(A3)

which is continuous, for ∀i ∈ N , by continuity of pj(x|x̂j) for ∀j ∈ N ,

constancy of pj(x|x̂j) for ∀j ∈ C(x|σ) and by local, that is on any interval

induced by ND(σ), constancy of C(x|σ) and rnc(x|σ).

What remains is, for ∀i ∈ N , Vi(x
−|σ) = Vi(x|σ) = Vi(x

+|σ) for any

x ∈ ND(σ). For x = xm the claim follows from pj(x
−
m|x̂j) = pj(xm|x̂j) =

pj(x
+
m|x̂j) = xm for ∀j ∈ N , C(x−m|σ) = C(x+m|σ), rnc(x

−
m|σ) = rnc(x

+
m|σ),

Vi(x
−
m|σ) = Vi(x

+
m|σ) (by part 1) and Vi(x

−
m|σ) = Vi(xm|σ) = ui(xm)

1−δ .

33 We do not rule out x̂i = ±∞. The meaning of, say, x̂i = ∞ in pi is player i ∈ Na
proposing da(x) for any status-quo x. We can use (2) since, when x̂i ≥ xm for ∀i ∈ Na,
x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm, proposal generated by the simple proposal strategy
pi of any i ∈ N is always accepted, which in turn follows from the properties of the social
acceptance correspondence A proved in part 6. As is standard, for now we conjecture that
part 6 holds and then confirm that it is the case.
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For x ∈ ND(σ) \ {xm} let us focus on cases when x > xm. When

x < xm the argument is symmetric and hence omitted. First notice that

pj(x
−|x̂j) = pj(x|x̂j) = pj(x

+|x̂j) for ∀j ∈ N and ∀x ∈ X so that the first

sum in the numerator of (A3) is continuous. Now use i) Vi(pj(x
−|x̂j)|σ) =

Vi(pj(x
+|x̂j)|σ) equal to Vi(x

−|σ) for ∀j ∈ Na and to Vi(db(x)+|σ) for

∀j ∈ Nb when j ∈ C(x+|σ)\C(x−|σ) (players that switch from non-constant

to constant part of their strategy at x), ii) Vi(x
−|σ) = Vi(db(x)+|σ) (by

part 1), iii) C(x−|σ) ∩ C(x+|σ) = C(x−|σ) (players switch to proposing con-

stant policy at x), iv) rnc(x
−|σ) = rnc(x

+|σ) +
∑

j∈C(x+|σ)\C(x−|σ) rj and

v) Vi(pj(x
−|x̂j)|σ) = Vi(pj(x|x̂j)|σ) = Vi(pj(x

+|x̂j)|σ) for ∀j ∈ C(x−|σ) ∩
C(x+|σ) (players that propose constant policy in the neighbourhood, below

and above, of x) to rewrite (A3), for any i ∈ N ,

Vi(x
+|σ) =

=

∑
j∈N rjui(pj(x

+|x̂j)) + δ
∑

j∈C(x+|σ) rjVi(pj(x
+|x̂j)|σ)

1− δrnc(x+|σ)

=

∑
j∈N rjui(pj(x

−|x̂j)) + δ

[ ∑
j∈C(x−|σ) rjVi(pj(x

−|x̂j)|σ)∑
j∈C(x+|σ)\C(x−|σ) rjVi(x

−|σ)

]
1− δrnc(x−|σ) + δ

∑
j∈C(x+|σ)\C(x−|σ) rj

=
Vi(x

−|σ)(1− δrnc(x−|σ)) + Vi(x
−|σ)δ

∑
j∈C(x+|σ)\C(x−|σ) rj

1− δrnc(x−|σ) + δ
∑

j∈C(x+|σ)\C(x−|σ) rj

= Vi(x
−|σ).

(A4)

To prove Vi(x|σ) = Vi(x
−|σ), we have, from Vi(pj(x|x̂i)|σ) = Vi(pj(x

−|x̂i)|σ)

for ∀j ∈ C(x−|σ) and Vi(pj(x|x̂j)|σ) = Vi(x|σ) for ∀j ∈ NC(x−|σ),

Vi(x|σ) =
∑
j∈N

rj [ui(pj(x|x̂j)) + δVi(pj(x|x̂j)|σ)]

=
∑
j∈N

rjui(pj(x
−|x̂j)) + δ

∑
j∈C(x−|σ)

Vi(pj(x
−|x̂j)|σ)

+ δrnc(x
−|σ)Vi(x|σ)

= Vi(x
−|σ)(1− δrnc(x−|σ)) + δrnc(x

−|σ)Vi(x|σ)

(A5)

and the claim, for any i ∈ N , follows.

Part 4, U ′′i (x|σ) < 0 for ∀x ∈ D(σ), follows from ui(x)′′ = −2, the

only non-constant term in (A3) being
∑
j∈NC(x|σ) rjui(pj(x|x̂j))

1−δrnc(x|σ) , u′′i (pj(x|x̂j)) =
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−2[p′j(x|x̂j)]2 and p′j(x|x̂j) = ±1 for j ∈ NC(x|σ). Thus we have U ′′i (x|σ) =

−2 + δ −2rnc(x|σ)1−δrnc(x|σ) = −2
1−δrnc(x|σ) < 0 for any x ∈ D(σ) and i ∈ N .

To prove part 5, we only need to show that Um(x|σ) is strictly increasing

for x < xm and strictly decreasing for x > xm. For any i ∈ N and x ∈ D(σ)

we have, using (A3) and p′j(x|x̂j) = ±1 for ∀j ∈ NC(x|σ) depending on

x ≷ xm and j ∈ Na or j ∈ Nb in obvious manner,

U ′i(x|σ) =


−2[x− xi − 2δrnc,a(x|σ)(xm − xi)]

1− δrnc(x|σ)
if x < xm

−2[x− xi − 2δrnc,b(x|σ)(xm − xi)]
1− δrnc(x|σ)

if x > xm.

(A6)

Evaluating the derivative for m shows that Um is, for ∀x ∈ D(σ), strictly

increasing for x < xm and strictly decreasing for x > xm. By continuity of

Um the claim follows.

Finally part 6, A(x|σ) = [db(x), da(x)] for ∀x ∈ X, is a consequence of

part 5 and of Proposition 1. �

A1.4 Proof of Lemma 3

Let x̂ be set of strategic bliss points from algorithm 1. To see part 1, if

δ = 0, the algorithm in step t computes x̂i,t = xi for ∀t ∈ {1, . . . , n− 1} and

∀i ∈ N . Hence Rt = ∅ for ∀t ∈ {1, . . . , n − 1} since the condition defining

Rt, (xi − xm)(x̂i,t − xm) ≤ 0, rewrites as (xi − xm)2 ≤ 0 and is violated.

The algorithm thus sets x̂i = xi in every step t ∈ {1, . . . , n−1} and because

x̂m = xm, x̂ = x follows.

To prove part 2, assume 1 ≤ 2δra. When 1 ≤ 2δrb the argument is

symmetric and omitted. 1 ≤ 2δra implies 1 > 2δrb; 1 ≤ 2δrb and 1 ≤ 2δra

sum to 1 ≤ δ(ra + rb), which contradicts δ < 1 and ra + rb = 1− rm < 1. In

step 0, the algorithm produces x̂m = xm. In step 1, the algorithm computes

x̂i,1 for ∀i ∈ N \ {m} using r1,a = ra and r1,b = rb. Now notice that, in

general step t of the algorithm, (xi − xm)(x̂i,t − xm) used to construct Rt
rewrites as (xi − xm)2(1 − 2δrt,a) if i ∈ Nb and as (xi − xm)2(1 − 2δrt,b) if

i ∈ Na. In step 1 this means R1 = Nb when 1 ≤ 2δra and 1 > 2δrb. At

this point the algorithm drops one of the players in R1 = Nb, say j′, and

sets x̂j′ = xm, which implies that P2 = Na ∪ Nb \ {j′} and hence r2,a = ra

and r2,b = rb − rj′ . Clearly R2 = Nb \ {j′}, the algorithm in step 2 drops

j′′ ∈ R2 ( Nb and sets x̂j′′ = xm, which implies P3 = Na ∪ Nb \ {j′, j′′}
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and hence r3,a = ra and r3,b = rb − rj′ − rj′′ . The algorithm continues in

similar manner, dropping j ∈ Nb and setting x̂j = xm, until step n−1
2 , in

which it drops last player from Nb. This implies Pn−1
2

+1 = Na and hence

rn−1
2

+1,a = ra and rn−1
2

+1,b = 0. For the remaining steps the algorithm thus

sets x̂i = xi for some i ∈ Na.

To prove part 3, because the algorithm is dropping players and rt,a and

rt,b are sums of recognition probabilities of the players that remain in the

algorithm, rt,a ≥ rt+1,a and rt,b ≥ rt+1,b for ∀t ∈ {1, . . . , n−2}. 1 > 2δra and

1 > 2δrb with r1,a = ra and r1,b = rb thus imply 1 > 2δrt,a and 1 > 2δrt,b

for ∀t ∈ {1, . . . , n − 1}. For any step t ∈ {1, . . . , n − 1} of the algorithm,

this implies Rt = ∅, x̂i,t > xm if i ∈ Na and x̂i,t < xm if i ∈ Nb and hence

x̂m−1 < x̂m = xm < x̂m+1. To prove x̂i < x̂i+1 for ∀i ∈ N \ {n}, we thus

need to show x̂i < x̂i+1 for ∀i ∈ Na \ {n} and ∀i ∈ Nb \ {m − 1}. We

do so for i ∈ Na \ {n}. For i ∈ Nb \ {m − 1} the argument is similar and

omitted. Note that, if i ∈ Na and t ∈ {1, . . . , n − 1}, ∂x̂i,t
∂xi

= 1 − 2δrt,b > 0

and
∂x̂i,t
∂rt,b

= 2δ(xm − xi) < 0. The first inequality implies x̂i,t < x̂i+1,t

if i ∈ Na \ {n} and t ∈ {1, . . . , n − 1}. The second inequality implies

x̂i,t ≤ x̂i,t+1 if i ∈ Na and t ∈ {1, . . . , n− 2}. Hence, if the algorithm drops

player i ∈ Na \ {n} in step t and player i+ 1 in step t′, t < t′, which allows

us to write x̂i = x̂i,t < x̂i+1,t ≤ x̂i+1,t′ = x̂i+1.

To prove d(x̂i) 6= d(x̂j) for any pair of players {i, j} with i 6= j, for

∀t ∈ {1, . . . , n− 1},

d(x̂i,t) = (xi − xm)(1− 2δrt,b) if i ∈ Na

d(x̂i,t) = (xm − xi)(1− 2δrt,a) if i ∈ Nb

(A7)

and hence d(x̂i,t) < d(x̂i+1,t) if i ∈ Na and d(x̂i,t) < d(x̂i−1,t) if i ∈ Nb.

In step t ∈ {1, . . . , n − 1} of the algorithm, arg mini∈Pt d(x̂i,t) thus either

includes unique player i′ or pair of players {i′, j′} such that i′ ∈ Na and

j′ ∈ Nb. In the former case, x̂i′ = x̂i′,t and d(x̂i′) < d(x̂i,t) ≤ d(x̂i,t+1) for

∀i ∈ Pt\{i′}, where the weak inequality follow from the fact that rt,a and rt,b

are non-increasing in t and thus d(x̂i,t) ≤ d(x̂i,t+1) for ∀t ∈ {1, . . . , n−2} for

any i ∈ N . When the algorithm drops i′′ ∈ Pt+1 = Pt\{i′} in step t+1, x̂i′′ =

x̂i′′,t+1 and hence d(x̂i′) < d(x̂i′′). In the latter case, suppose, without loss of

generality, that i′ is dropped. Then x̂i′ = x̂i′,t and d(x̂i′) < d(x̂i,t) ≤ d(x̂i,t+1)

for ∀i ∈ Pt \ {i′, j′}. It thus suffices to show that d(x̂i′,t) < d(x̂j′,t+1), which
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follows from d(x̂i′,t) = d(x̂j′,t) and the fact that when i′ ∈ Na is dropped,

rt,a > rt+1,a implies d(x̂i,t) < d(x̂i,t+1) for any i ∈ Nb, including j′ ∈ Nb. �

A1.5 Proof of Proposition 2

We know from Lemma 1 that if x̂ induces SMPE σ, then x̂i ≥ xm for

∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm. From proof of Lemma 3, the

same is true for any x̂ produced by algorithm 1. Lemma 2 thus applies when

we refer to x̂ that constitutes SMPE or is produced by algorithm 1.

Case 1: When δ = 0, clearly there exists unique x̂ that induces SMPE

σ, x̂ = x, and we know from Lemma 3 part 1 that algorithm 1 produces

x̂ = x.

Case 2: When δ ∈ (0, 1) and 1 ≤ 2δra, by Lemma 3 part 2, we need to

show that if x̂ induces SMPE σ, then it satisfies x̂i = xm for ∀i ∈ N \ Na

and x̂i > xi for ∀i ∈ Na. Note that 1 ≤ 2δra implies 1 > 2δrb as shown in

the proof of Lemma 3. Fix x̂ and suppose it induces SMPE σ. We proceed

by series of claims.

First, we claim x̂i > xm for ∀i ∈ Na. Suppose, towards a contradiction,

that x̂i = xm for some i ∈ Na. Using (A6) and rnc,b(x
+
m|σ) ≤ rb, we have

U ′i(x
+
m|σ) =

−2(xm−xi)(1−2δrnc,b(x+m|σ))
1−δrnc(x+m|σ)

> 0. Hence, there exists ε′ > 0 such

that Ui(xm|σ) < Ui(xm + ε|σ) and, from x̂i = xm, pi(xm + ε|x̂i) = xm for

∀ε ∈ (0, ε′), which, because xm+ ε ∈ A(xm+ ε|σ) for ∀ε ∈ (0, ε′), contradicts

x̂i = xm being part of x̂ that induces SMPE σ.

Second, we claim x̂i = xm for ∀i ∈ Nb. Suppose, towards a contradiction,

that x̂i < xm for some i ∈ Nb. Using (A6) and rnc,a(x
−
m|σ) = ra ≥ 1

2δ , where

the equality follows from x̂j > xm for ∀j ∈ Na proven in the previous claim,

U ′i(x
−
m|σ) = −2(xm−xi)(1−2δra)

1−δrnc(x−m|σ)
≥ 0. Because U ′′i (x|σ) < 0 for ∀x ∈ D(σ) by

Lemma 2 part 4, there exists ε′ > 0 such that Ui(xm|σ) > Ui(xm − ε|σ)

and, from x̂i < xm, pi(xm − ε|x̂i) = xm − ε for ∀ε ∈ (0, ε′), which, because

xm ∈ A(xm − ε|σ) for ∀ε ∈ (0, ε′), contradicts x̂i < xm being part of x̂ that

induces SMPE σ.

Third, we claim x̂i = xi for ∀i ∈ Na. Suppose, towards a contra-

diction, that x̂i 6= xi for some i ∈ Na. By the first claim, this implies

x̂i ∈ (xm, xi)∪ (xi,∞). Using (A6) and rnc,b(x|σ) = 0 for ∀x ∈ D(σ), where

the equality follows from x̂j = xm for ∀j ∈ Nb proven in the previous claim,

sgn [U ′i(x̂
−
i |σ)] = sgn [U ′i(x̂

+
i |σ)] = sgn [xi − x̂i]. If x̂i ∈ (xm, xi), there exists

ε′ > 0 such that, for ∀ε ∈ (0, ε′), Ui(x̂i|σ) < Ui(x̂i + ε|σ), pi(x̂i + ε|x̂i) = x̂i
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and x̂i + ε ∈ A(x̂i + ε|σ). If x̂i ∈ (xi,∞), there exists ε′ > 0 such that, for

∀ε ∈ (0, ε′), Ui(xi|σ) > Ui(xi+ε|σ), pi(xi+ε|x̂i) = xi+ε and xi ∈ A(xi+ε|σ).

Each case contradicts x̂i being part of x̂ that induces SMPE σ.

Case 3: When δ ∈ (0, 1) and 1 ≤ 2δrb, by Lemma 3 part 2, we need to

show that if x̂ induces SMPE σ, then it satisfies x̂i = xm for ∀i ∈ N \ Nb

and x̂i > xi for ∀i ∈ Nb. The proof is analogous to the proof of case 2 and

is omitted.

Case 4: When δ ∈ (0, 1), 1 > 2δra and 1 > 2δrb, we need to show that

if x̂ induces SMPE σ, then x̂ ∈ X̂, where X̂ is set of sets of strategic bliss

points produced by algorithm 1. We start by proving several properties of

x̂ that induces SMPE σ.

Lemma A1. Assume δ ∈ (0, 1), 1 > 2δra and 1 > 2δrb. If x̂ induces SMPE

σ, then

1. x̂i > xm for ∀i ∈ Na and x̂i < xm for ∀i ∈ Nb

2. U ′i(x̂
−
i |σ) = 0 for ∀i ∈ Na and U ′i(x̂

+
i |σ) = 0 for ∀i ∈ Nb

3. U ′i(x
−|σ) < U ′i+1(x

−|σ) and U ′i(x
+|σ) < U ′i+1(x

+|σ) for ∀x ∈ X and

∀i ∈ N \ {n}

4. x̂i < x̂i+1 for ∀i ∈ N \ {n} and d(x̂i) 6= d(x̂j) for ∀i ∈ N , ∀j ∈ N ,

i 6= j

Proof. To show part 1 of the lemma, note that x̂i > xm for ∀i ∈ Na follows

from the first claim in case 2. The argument there relied only on 1 > 2δrb.

Analogous argument can be used to prove x̂i < xm for ∀i ∈ Nb if 1 > 2δra.

To show part 2, we show U ′i(x̂
−
i |σ) = 0 for ∀i ∈ Na. The argument

proving U ′i(x̂
+
i |σ) = 0 for ∀i ∈ Nb is analogous and omitted. Suppose,

towards first contradiction, that U ′i(x̂
−
i |σ) < 0 for some i ∈ Na. By part 1,

x̂i > xm. Hence, there exists ε′ > 0 such that, for ∀ε ∈ (0, ε′), Ui(x̂i|σ) <

Ui(x̂i− ε|σ), pi(x̂i|x̂i) = x̂i and x̂i− ε ∈ A(x̂i|σ), which contradicts x̂i being

part of x̂ that induces SMPE σ. Suppose now, towards second contradiction,

that U ′i(x̂
−
i |σ) > 0 for some i ∈ Na. Using (A6) and x̂i > xm,

U ′i(x̂
−
i |σ) = −2

1−δrnc(x̂−i |σ)

[
x̂i − xi − 2δrnc,b(x̂

−
i |σ)(xm − xi)

]
U ′i(x̂

+
i |σ) = −2

1−δrnc(x̂+i |σ)

[
x̂i − xi − 2δrnc,b(x̂

+
i |σ)(xm − xi)

]
.

(A8)
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Because rnc,b(x
−|σ) ≥ rnc,b(x

+|σ) for any x > xm, U ′i(x̂
+
i |σ) ≥ U ′i(x̂

−
i |σ)

and thus U ′i(x̂
+
i |σ) > 0. Hence, there exists ε′ > 0 such that, for ∀ε ∈ (0, ε′),

Ui(x̂i|σ) < Ui(x̂i + ε|σ), pi(x̂i + ε|x̂i) = x̂i and x̂i + ε ∈ A(x̂i + ε|σ), which

contradicts x̂i being part of x̂ that induces SMPE σ.

For part 3, taking limits from below and from above in (A6) and differ-

entiating with respect to xi gives, for ∀x ∈ X,

∂
∂xi
U ′i(x

−|σ) =


2

1−δrnc(x−|σ)
[
1− 2δrnc,a(x

−|σ)
]

if x ≤ xm
2

1−δrnc(x−|σ)
[
1− 2δrnc,b(x

−|σ)
]

if x > xm

∂
∂xi
U ′i(x

+|σ) =


2

1−δrnc(x+|σ)
[
1− 2δrnc,a(x

+|σ)
]

if x < xm

2
1−δrnc(x+|σ)

[
1− 2δrnc,b(x

+|σ)
]

if x ≥ xm

(A9)

which, by rnc,a(x|σ) ≤ ra <
1
2δ and rnc,b(x|σ) ≤ rb <

1
2δ for ∀x ∈ D(σ) and

hence rnc,g(x
−|σ) ≤ rg and rnc,g(x

+|σ) ≤ rg for ∀x ∈ X and g ∈ {a, b},
implies ∂

∂xi
U ′i(x

−|σ) > 0 and ∂
∂xi
U ′i(x

+|σ) > 0.

To show part 4, we first prove x̂i < x̂i+1 for ∀i ∈ N \ {n}. By part 1,

x̂i < xm for ∀i ∈ Nb and x̂i > xm for ∀i ∈ Na. It thus suffices to prove

x̂i < x̂i+1 for ∀i ∈ Na \{n} and ∀i ∈ Nb \{m−1}. We do so for i ∈ Na \{n}.
For i ∈ Nb \{m−1} the argument is similar and omitted. Suppose, towards

first contradiction, that x̂i = x̂i+1 for some i ∈ Na\{n}. By part 1, x̂i > xm,

which by part 2 implies U ′i(x̂
−
i |σ) = 0 and hence, by part 3, U ′i+1(x̂

−
i |σ) > 0.

The last inequality contradicts U ′i+1(x̂
−
i |σ) = 0, which follows by part 2 and

x̂i = x̂i+1. Suppose, towards second contradiction, that x̂i+1 < x̂i. By part

2, U ′i+1(x̂
−
i+1|σ) = 0, which by part 3 implies U ′i(x̂

−
i+1|σ) < 0. Because x̂i+1 >

xm, there exists ε′ > 0 such that, for ∀ε ∈ (0, ε′), Ui(x̂i+1|σ) < Ui(x̂i+1−ε|σ),

pi(x̂i+1|x̂i) = x̂i+1 and x̂i+1−ε ∈ A(x̂i+1|σ), which contradicts x̂i being part

of x̂ that induces SMPE σ.

To prove d(x̂i) 6= d(x̂j) for any pair of players {i, j} such that i 6= j,

because x̂i < x̂i+1 for ∀i ∈ N \ {n}, it suffices to rule out d(x̂i) = d(x̂j)

for ∀i ∈ Nb and ∀j ∈ Na. Suppose, towards contradiction, that there exists

i ∈ Nb and j ∈ Na such that d(x̂i) = d(x̂j). By part 2, U ′j(x̂
−
j |σ) = 0.

Because d(x̂i) = d(x̂j) and i ∈ Nb, rnc,b(x̂
−
j |σ) > rnc,b(x̂

+
j |σ), which from

(A8) implies U ′j(x̂
+
j |σ) > 0. Hence, there exists ε′ > 0 such that, for ∀ε ∈

(0, ε′), Uj(x̂j |σ) < Uj(x̂j + ε|σ), pj(x̂j + ε|x̂j) = x̂j and x̂j + ε ∈ A(x̂j + ε|σ),

which contradicts x̂j being part of x̂ that induces SMPE σ. �
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Returning to case 4, for any x̂ that constitutes SMPE or is produced by

algorithm 1, define iteratively, for t ∈ {0, . . . , n−1} starting with ix̂(0) = m,

ix̂(t) = arg min
i∈N\{ix̂(0),...,ix̂(t−1)}

d(x̂i) (A10)

with the equal sign justified by d(x̂i) 6= d(x̂j) for any pair of players {i, j}
in x̂ for which we define ix̂. ix̂(t) is index of player with (t + 1)th smallest

d(x̂i) in x̂, starting from t = 0. Using ix̂ define for t ∈ {0, . . . , n− 1}

o(x̂, t) = (ix̂(0), ix̂(1), . . . , ix̂(t)) (A11)

and write o(x̂, t) = o(x̂′, t) if and only if ix̂(k) = ix̂′(k) for ∀k ∈ {0, . . . , t}.
o(x̂, n−1) is the set of players in N ordered by d(x̂i) in x̂, so that d(x̂ix̂(k)) <

d(x̂ix̂(k+1)) for ∀k ∈ {0, . . . , n− 2}.

Lemma A2. Assume δ ∈ (0, 1), 1 > 2δra and 1 > 2δrb. If x̂o induces

SMPE σ and x̂ ∈ X̂, then o(x̂, t′) = o(x̂o, t′) for some t′ ∈ {0, . . . , n − 1}
implies x̂ix̂(t) = x̂oix̂o (t) for ∀t ∈ {0, . . . , t′}.

Proof. Fix x̂o that induces SMPE σo and x̂ ∈ X̂ produced by algorithm 1.

Suppose o(x̂o, t′) = o(x̂, t′) for some t′ ∈ {0, . . . , n− 1}. The proof proceeds

by induction on t. For t = 0, we have ix̂(0) = ix̂o(0) = m and we know

x̂om = x̂m = xm. Suppose that x̂ix̂(t′′) = x̂oix̂o (t′′) for ∀t′′ ∈ {0, . . . , t} for some

t < t′. We need to show x̂ix̂(t+1) = x̂oix̂o (t+1).

Because o(x̂o, t′) = o(x̂, t′) and t+1 ≤ t′, let us use only the ix̂ indexing.

Denote j′ = ix̂(t) and j′′ = ix̂(t + 1). We need to show x̂j′′ = x̂oj′′ . Assume

that j′′ ∈ Na. When j′′ ∈ Nb, the proof is similar and omitted. Denote

Nj′ = ∪ti=0ix̂(i) and Nj′′ = N \Nj′ .

By definition of j′ and j′′, d(x̂j′) < d(x̂j′′) and d(x̂oj′) < d(x̂oj′′). Because

x̂ix̂(t′′) = x̂oix̂(t′′) for ∀t′′ ∈ {0, . . . , t}, we know x̂i = x̂oi for ∀i ∈ Nj′ , so that

d(x̂i) < d(x̂j′) and d(x̂oi ) < d(x̂oj′) for ∀i ∈ Nj′ \ {j′}. From o(x̂o, t + 1) =

o(x̂, t+ 1), we know j′′ = ix̂(t+ 1) = ix̂o(t+ 1), so that d(x̂j′′) < d(x̂i) and

d(x̂oj′′) < d(x̂oi ) for ∀i ∈ Nj′′ \ {j′′}.
From these rnc,a(x|σo) =

∑
i∈Nj′′∩Na

ri and rnc,b(x|σo) =
∑

i∈Nj′′∩Nb
ri

for ∀x ∈ (da(x̂
o
j′), x̂

o
j′′) ⊂ D(σo). Using (A6) and U ′j′′(x̂

o−
j′′ |σ

o) = 0 from

Lemma A1 part 2, x̂oj′′ = xj′′ + 2δ
∑

i∈Nj′′∩Nb
ri (xm − xj′′).

To calculate x̂j′′ , algorithm 1 drops player j′ in step t, which means the

algorithm uses, in step t + 1 when j′′ is dropped and x̂j′′ set, Pt+1 = Nj′′ .
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This gives rt+1,b =
∑

i∈Nj′′∩Nb
ri and x̂j′′ = xj′′+2δ

∑
i∈Nj′′∩Nb

ri (xm−xj′′).
Clearly, x̂j′′ = x̂oj′′ . �

Returning to case 4, fix x̂o that induces SMPE σo. We need to show

x̂o ∈ X̂. Suppose x̂o /∈ X̂. For t ∈ {0, . . . , n− 1} define

X̂t = {x̂ ∈ X̂|o(x̂, t) = o(x̂o, t)}. (A12)

X̂t is the set of sets of strategic bliss points from algorithm 1, that satisfy

ix̂(k) = ix̂o(k) for all k ∈ {0, . . . , t}. By Lemma A2, if x̂ ∈ X̂t′ , then x̂ix̂(t) =

x̂oix̂o (t) for ∀t ∈ {0, . . . , t′}. Clearly, X̂t+1 ⊆ X̂t for ∀t ∈ {0, . . . , n − 2}.
Because x̂om = xm and x̂m = xm for ∀x̂ ∈ X̂, X̂0 = X̂. From x̂o /∈ X̂, we

also have X̂n−1 = ∅; if X̂n−1 6= ∅ we would have o(x̂, n − 1) = o(x̂o, n − 1)

for x̂ ∈ X̂n−1 and hence, by Lemma A2, x̂ = x̂o.

Now pick t such that X̂t 6= ∅ and X̂t+1 = ∅ and fix x̂ ∈ X̂t. Clearly,

t ∈ {0, . . . , n−2} and o(x̂, t) = o(x̂o, t) follows from definition of X̂t. Denote

j′ = ix̂(t) = ix̂o(t), j
′′
a = ix̂(t + 1), j′′o = ix̂o(t + 1), Nj′ = ∪ti=0ix̂(i) and

Nj′′ = N \Nj′ .

By definition of j′ and j′′a , d(x̂i) < d(x̂j′) < d(x̂j′′a ) < d(x̂j) for ∀i ∈
Nj′ \{j′} and ∀j ∈ Nj′′ \{j′′a}. Similarly, d(x̂oi ) < d(x̂oj′) < d(x̂oj′′o ) < d(x̂oj) for

∀i ∈ Nj′ \ {j′} and ∀j ∈ Nj′′ \ {j′′o}. From Lemma A2 and o(x̂, t) = o(x̂o, t),

we also know x̂i = x̂oi for ∀i ∈ Nj′ .

From these rnc,a(x|σo) =
∑

i∈Nj′′∩Na
ri and rnc,b(x|σo) =

∑
i∈Nj′′∩Nb

ri

for ∀x ∈ (db(x̂
o
j′′o

), db(x̂
o
j′)) ∪ (da(x̂

o
j′), da(x̂

o
j′′o

)) ⊂ D(σo). Also, algorithm 1

drops player j′ in step t, which means it uses, in step t + 1 when j′′a is

dropped and x̂j′′a set, Pt+1 = Nj′′ . This gives rt+1,a =
∑

i∈Nj′′∩Na
ri and

rt+1,b =
∑

i∈Nj′′∩Nb
ri.

We now show d(x̂j′′a ) = d(x̂oj′′o ). Suppose, towards first contradiction,

that d(x̂oj′′o ) < d(x̂j′′a ). From Lemma A1 part 2, U ′j′′o (x̂o−j′′o
|σo) = 0 if j′′o ∈ Na

and U ′j′′o (x̂o+j′′o
|σo) = 0 if j′′o ∈ Nb. Using (A6), we get

x̂oj′′o =

 xj′′o + 2δ
∑

i∈Nj′′∩Nb
ri (xm − xj′′o ) if j′′o ∈ Na

xj′′o + 2δ
∑

i∈Nj′′∩Na
ri (xm − xj′′o ) if j′′o ∈ Nb

(A13)

Algorithm 1 in step t + 1 calculates x̂j′′o ,t+1 and x̂j′′a ,t+1 and, since j′′a is

dropped and x̂j′′a set, we know d(x̂j′′a ) ≤ d(x̂j′′o ,t+1). Because the algorithm

in step t + 1 uses Pt+1 = Nj′′ , clearly x̂j′′o ,t+1 = x̂oj′′o and hence d(x̂j′′a ) ≤

58



d(x̂j′′o ), which yields the desired contradiction. Suppose now, towards second

contradiction, that d(x̂j′′a ) < d(x̂oj′′o ). From algorithm 1,

x̂j′′a =

 xj′′a + 2δ
∑

i∈Nj′′∩Nb
ri (xm − xj′′a ) if j′′a ∈ Na

xj′′a + 2δ
∑

i∈Nj′′∩Na
ri (xm − xj′′a ) if j′′a ∈ Nb

(A14)

Because d(x̂oj′) = d(x̂j′) < d(x̂j′′a ), we can use x̂j′′a in (A6) to show that

U ′j′′a (x̂j′′a |σ
o) = 0. Assume j′′a ∈ Na. When j′′a ∈ Nb the argument is similar

and omitted. From j′′a ∈ Nj′′ , we have d(x̂oj′′o ) < d(x̂oj′′a ) and hence x̂j′′a < x̂oj′′a .

U ′j′′a (x̂j′′a |σ
o) = 0 and U ′′j′′a (x|σo) < 0 for ∀x ∈ D(σo) from Lemma 2 part 4

then imply that there exists ε′ > 0 such that, for ∀ε ∈ (0, ε′), Ui(x̂j′′a |σ
o) >

Ui(x̂j′′a + ε|σo), pi(x̂j′′a + ε|x̂oj′′a ) = x̂j′′a + ε and x̂j′′a ∈ A(x̂j′′a + ε|σ), which

contradicts x̂oj′′a being part of x̂o that induces SMPE σo.

Having shown d(x̂j′′a ) = d(x̂oj′′o ), algorithm 1 in step t+1 calculates x̂j′′a ,t+1

and x̂j′′o ,t+1 and, since j′′a is dropped and x̂j′′a set, d(x̂j′′a ) = d(x̂j′′a ,t+1). Be-

cause the algorithm in step t + 1 uses Pt+1 = Nj′′ , x̂j′′o ,t+1 = x̂oj′′o so that

d(x̂j′′a ,t+1) = d(x̂j′′o ,t+1). Thus there exists x̂′ ∈ X̂, such that ix̂(k) = ix̂′(k)

for ∀k ∈ {0, . . . , t} and ix̂′(t+ 1) = j′′o , created by dropping j′′o instead of j′′a

in step t + 1. Because o(x̂, t) = o(x̂o, t) and ix̂o(t + 1) = j′′o , o(x̂′, t + 1) =

o(x̂o, t+ 1), which implies x̂′ ∈ X̂t+1, a contradiction to X̂t+1 = ∅. �

A1.6 Proof of Lemma 4

By Lemma 3, it suffices to show the lemma only for δ ∈ (0, 1), 1 > 2δra

and 1 > 2δrb; if δ = 0 or δ ∈ (0, 1) and 1 ≤ 2δrg for some g ∈ {a, b}, then

algorithm 1 produces unique x̂. Fix x̂ from algorithm 1 applied to G with

x and assume there exists another x̂′ produced by the algorithm.

We follow steps of algorithm 1 when producing x̂. In step 0, the algo-

rithm sets x̂m = xm. From 1 > 2δra and 1 > 2δrb, Rt = ∅ for any remaining

step t ∈ {1, . . . , n − 1}. Because there exists x̂′, there must be step t′

at which the algorithm calculates x̂i′,t′ and x̂j′,t′ with d(x̂i′,t′) = d(x̂j′,t′),

chooses to drop i′ and retains j′. Suppose t′ is first such step, that is in all

steps t ∈ {0, . . . , t′−1} the algorithm does not have a choice regarding which

player to drop. Assume i′ ∈ Na. When i′ ∈ Nb the argument is similar and

omitted.

We start construction of the claimed perturbation x(ε) by setting xi(ε) =
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xi for ∀i ∈ N \ {i′} and xi′(ε) = xi′ − ε.34 Because xi′−1 < xi′ , there exists

ε̄ > 0 such that xi′−1(ε) < xi′(ε) for ∀ε ≤ ε̄. Clearly, limε→0 x(ε) = x. We

claim that there exists ε̄ > 0 such that for ∀ε ≤ ε̄, algorithm 1 applied to x(ε)

drops players in the same order as algorithm 1 applied to x, has unique choice

to drop player i′ in step t′, and produces x̂(ε) such that limε→0 x̂(ε) = x̂.

To see that players are dropped in the same order for x and x(ε), we

know that in any step t ∈ {0, . . . , t′ − 1} algorithm 1 applied to x does not

have a choice regarding which player to drop and does not drop player i′.

This implies d(x̂i,t) < d(x̂i′,t) = d(xi′)(1− 2δrt,b) for ∀t ∈ {0, . . . , t′− 1} and

∀i ∈ Pt \ {i′}. Because the perturbation affects only bliss point of player

i′, we have, for ∀t ∈ {0, . . . , t′ − 1}, x̂i,t(ε) = x̂i,t for ∀i ∈ Pt \ {i′} and

d(x̂i′,t(ε)) = (d(xi′) − ε)(1 − 2δrb). Clearly, there exists ε̄ > 0 such that

∀ε ≤ ε̄, d(x̂i,t(ε)) < d(x̂i′,t(ε)) for ∀t ∈ {0, . . . , t′ − 1} and ∀i ∈ Pt \ {i′}.
That is, players are dropped in the same order for x and x(ε) in steps

t ∈ {0, . . . , t′ − 1}. The same holds for steps t ∈ {t′ + 1, . . . , n− 1}, because

the perturbation does not affect bliss points of any of the players in the

algorithm. What remains it to show that algorithm 1 applied to x(ε) drops

player i′ in step t′. To see this, we know that d(x̂i′,t′) = d(x̂j′,t′), d(x̂j′,t′(ε)) =

d(x̂j′,t′) and d(x̂i′,t′(ε)) < d(x̂i′,t′). This implies d(x̂i′,t′(ε)) < d(x̂j′,t′(ε)) so

that i′ is dropped in step t′. Because d(x̂i′,t′(ε)) < d(x̂j′,t′(ε)), the algorithm

has unique choice to drop i′ in step t′ and since the perturbation affects only

bliss point of player i′, clearly limε→0 x̂(ε) = x̂.

We followed algorithm 1 when producing x̂ until step t′, the first step at

which the algorithm has choice regarding the player to drop. At that point

we constructed x(ε) such that the algorithm applied to x(ε) drops unique

player in step t′ and the order of players dropped is the same for x and x(ε).

We can now proceed iteratively, find step t′′ > t′, the second step of the

algorithm applied to x at which it has choice regarding the player to drop,

and set xi′′(ε) = xi′′ − ε in x(ε) for player i′′ dropped in step t′′. The order

of players dropped again remains the same and the algorithm has unique

choice to drop player i′′ in step t′′ when constructing x̂(ε). �

34 If i′ ∈ Nb the perturbation required is xi′(ε) = xi′ + ε.
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A1.7 Proof of Proposition 3

From definition 3 of SMPE, profile of strategies σ̂ constitutes SMPE, by

one-stage-deviation principle, if σ̂ induces Ui(σ̂) for ∀i ∈ N and A(σ̂) such

that the set of optimal proposal strategies, arising from maximization of

Ui(σ̂) on A(σ̂) for any given status-quo, includes σ̂.

Fix set of strategic bliss points x̂ from algorithm 1 and induced profile

of strategies σ. Clearly, the voting strategies subsumed in σ are optimal for

every player. Because x̂ satisfies x̂i ≥ xm for ∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb

and x̂m = xm, by Lemma 2, pi(x|x̂i) ∈ A(x|σ) for ∀x ∈ X and ∀i ∈ N . That

is, proposals with zero probability of acceptance are never made. Also, for m

we have x̂m = xm, hence proposal strategy of the median player is optimal

by Lemma 2 part 5.

Now let us focus on player i ∈ Na. The argument for i ∈ Nb is symmetric

and omitted. By Lemma 2 part 2, player i will never propose any policy

p < xm. Using shape of A from Lemma 2 part 6, we need to make sure that

proposing da(x) for any x ∈ [db(x̂i), da(x̂i)] and x̂i otherwise is optimal for

i. Ui making this proposal strategy optimal has to satisfy Ui(x|σ) ≤ Ui(y|σ)

for any x ∈ [xm, x̂i] and y ∈ [xm, x̂i] such that x < y and Ui(x̂i|σ) ≥
Ui(y|σ) for any y > x̂i. The first inequality follows from the way algorithm

1 constructs the strategic bliss points; it generates x̂ such that U ′i(x̂
−
i |σ) = 0

and U ′i(x̂
−
j |σ) ≥ 0 for any j ∈ {m + 1, . . . , i − 1} which, combined with

piece-wise strict concavity of Ui, shows the claim. To ensure the second

inequality, notice that from (A6) we have U ′i(x|σ) ≤ 0 for x ∈ D(σ) and

x ≥ xi so that Ui(xi|σ) ≥ Ui(y|σ) for any y > xi. Hence we need to make

sure that Ui(x̂i|σ) ≥ Ui(y|σ) for any y ∈ [x̂i, xi] in order for σ to constitute

SMPE.

To prove that condition S is sufficient, part 1, first we note U ′i(x̂
+
i |σ) ≤ 0.

When x̂i = xm algorithm 1 drops i because U ′i(x̂
+
i |σ) ≤ 0. When x̂i > xm

algorithm 1 drops i because U ′i(x̂
−
i |σ) = 0 and we have U ′i(x̂

−
i |σ) = U ′i(x̂

+
i |σ)

from (A6), the fact that exactly one player is dropped in any step of the

algorithm and from rnc,b(x̂
−
i |σ) = rnc,b(x̂

+
i |σ) when i ∈ Na is dropped.

Hence, by strict concavity of Ui, we need to ensure that U ′i(x
+|σ) ≤ 0

for ∀x ∈ ND(σ) ∩ (x̂i, xi) = Si(σ). Using (A6) this condition becomes

x− xi− 2δrnc,b(x
+|σ)(xm− xi) ≥ 0, which is what the condition S requires.

Hence if S holds, we have Ui(x̂i|σ) ≥ Ui(y|σ) for any y ∈ [x̂i, xi] and σ

constitutes SMPE.
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To prove that condition N is necessary and sufficient, part 2, we note that

Ui(x̂i|σ) ≥ Ui(y|σ) for any y ∈ [x̂i, xi] is equivalent to Ui(x̂i|σ) ≥ Ui(y|σ)

for any y ∈ ((ND(σ) ∪ Li(σ)) ∩ (x̂i, xi)) ∪ {xi, x̂i} = Ni(σ). To see this,

take two adjacent elements of ND(σ) from [x̂i, xi], x
′ and x′′, with x′ < x′′.

If Ui has no local maximum on [x′, x′′], that is when [x′, x′′] ∩ Li(σ) = ∅,
then Ui(x

′|σ) > Ui(x
′′|σ) ⇔ Ui(x

′|σ) > Ui(y|σ) and Ui(x
′|σ) < Ui(x

′′|σ) ⇔
Ui(x

′|σ) < Ui(y|σ) for any y ∈ [x′, x′′] (equality cannot happen by strict

concavity of Ui). If Ui has local maximum on [x′, x′′] then exactly one and

we can set x′′′ = [x′, x′′] ∩ Li(σ) and proceed with similar argument using

x′′′ instead of x′′.

To show that Ui(x̂i|σ) ≥ Ui(y|σ) for any y ∈ Ni(σ) is equivalent to N, for

any differentiable continuous function f , f(x)− f(z) = [
∫
f ′(a)da]xz . When

f is not differentiable at x, y, z with x < y < z but possesses one-sided

derivatives at x, y, z, we have f(x) − f(z) = [
∫
f ′(a)da]x

+

y− + [
∫
f ′(a)da]y

+

z− .

Now, (A6) for x > xm can be rewritten as U ′i(x|σ) = −2
1−δrnc(x|σ) [x− ci(x|σ)]

where ci(x|σ) = xi + 2δrnc,b(x|σ)(xm − xi). Hence
∫
U ′i(x|σ) = Ti(x|σ) =

−2
1−δrnc(x|σ)

[
x2

2 − ci(x|σ)x
]

as rnc,b(x|σ) and rnc(x|σ) are both constant on

any interval induced by ND(σ). Condition N then takes into account that

Ni(σ) can have arbitrary number of elements. When it holds, we have

Ui(x̂i|σ) ≥ Ui(y|σ) for any y ∈ [x̂i, xi] and σ constitutes SMPE. When it

fails, we have Ui(x̂i|σ) < Ui(y|σ) for some y ∈ [x̂i, xi] and σ cannot constitute

SMPE, as i would like to deviate to proposing y when the status-quo is y,

as opposed to proposing x̂i that σ requires. �

A1.8 Proof of Proposition 4

Algorithm 1 in step t calculates

x̂i,t = xi + 2δrt,a(xm − xi) if i ∈ Nb

x̂i,t = xi + 2δrt,b(xm − xi) if i ∈ Na

(A15)

and drops i ∈ arg minj∈Pt d(x̂j,t) if Rt = ∅. Throughout the proof let us

assume δ ≤ 1
2 , so that 1 > 2δra and 1 > 2δrb, which implies Rt = ∅.

Suppose first that d(xi) 6= d(xj) for ∀i ∈ N and ∀j ∈ N . Writing

d(x̂i,t) = d(xi)(1 − 2δrt,a) for i ∈ Nb and d(x̂i,t) = d(xi)(1 − 2δrt,b) for

i ∈ Na shows that d(x̂i,t) ∈ (d(xi)(1 − 2δ), d(xi)] for ∀i ∈ N \ {m} and

∀t ∈ {1, . . . , n − 1}. Hence there exists δ̄ ∈ (0, 1) such that for ∀δ ≤ δ̄,
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d(xj) < d(xi) implies d(xj) < d(xi)(1 − 2δ) and hence d(x̂j,t) < d(x̂i,t) for

∀t ∈ {1, . . . , n− 1}. Since d(xi) 6= d(xj) for any pair of players, algorithm 1

for ∀δ ≤ δ̄ drops player with the smallest d(xi) in step 0 and player with the

second smallest d(xi) in step 1. The algorithm continues in a similar manner,

dropping player with the tth smallest d(xi) in step t − 1, until step n − 1

when it drops player with the largest d(xi). Denote the set of strategic bliss

points produced for G with δ by x̂(δ) and the profile of strategies induced

by σ(δ). Note that for ∀δ ≤ δ̄, x̂(δ) produced by algorithm 1 is unique.

We now argue that, for ∀δ ≤ δ̄, x̂(δ) algorithm 1 produces satisfies

condition S. Let it denote the player dropped in step t ∈ {0, . . . , n−1}. For

i0 = m we do not need to verify S since it does not apply to the median

player. For in−1, x̂in−1 = xin−1 is easy to see from algorithm 1 so that

Sin−1(σ(δ)) = ∅ and condition S holds for in−1. For it with t ∈ {1, . . . , n−1},
we know that d(x̂it−1) ≤ d(xit−1) < d(x̂it) ≤ d(xit) < d(x̂it+1) ≤ d(xit+1)

for ∀δ ≤ δ̄ so that Sit(σ(δ)) = ∅ and condition S holds for it for any t ∈
{1, . . . , n− 1}.

Suppose now that there exists pair of players {i′, j′} with d(xi′) = d(xj′).

Without loss of generality let i′ ∈ Nb and j′ ∈ Na. If there are multiple such

pairs, let {i′, j′} be the one with the largest i′ and hence the smallest j′.

By the preceding argument, there exists δ̄ ∈ (0, 1), such that for ∀δ ≤ δ̄

algorithm 1 drops players {i′+ 1, . . . , j′− 1} in steps t ∈ {0, . . . , j′− i′− 2},
drops players i′ and j′ in steps t′ = j′ − i′ − 1 and t′ + 1, and drops players

{1, . . . , i′− 1}∪ {j′+ 1, . . . , n} in steps t ∈ {t′+ 2, . . . , n− 1}. Moreover, for

∀δ ≤ δ̄, d(xi) < d(x̂i′) and d(xi) < d(x̂j′) for ∀i ∈ {i′ + 1, . . . , j′ − 1} and

d(xi′) = d(xj′) < d(x̂i) for ∀i ∈ {1, . . . , i′− 1}∪ {j′+ 1, . . . , n}. This implies

that condition S holds for ∀i ∈ {i′ + 1, . . . , j′ − 1} and that Si′(σ(δ)) and

Sj′(σ(δ)) include at most unique element db(x̂j′) and da(x̂i′) respectively.

We now need to verify condition N for i′ and j′. Suppose i′ has been

dropped in step t′ and j′ in step t′ + 1. In step t′ of the algorithm, Pt′ =

{1, . . . , i′} ∪ {j′, . . . , n}, rt′,b =
∑i′

k=1 rk and rt′,a =
∑n

k=j′ rk and i′ can be

dropped only if rt′,b ≤ rt′,a. This implies

x̂i′ = xi′ + 2δrt′,a(xm − xi′)

x̂j′ = xj′ + 2δ(rt′,b − ri′)(xm − xj′)
(A16)

which gives db(x̂j′) = xi′ + 2δ(rt′,b − ri′)(xm − xi′) from d(xi′) = d(xj′) ⇔
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(xm − xi′) = −(xm − xj′). Because xi′ ≤ db(x̂j′) < x̂i′ , it is easy to see

that da(x̂i′) < x̂j′ ≤ xj′ . If x̂j′ = xj′ , Si′(σ(δ)) = Sj′(σ(δ)) = ∅ so that

condition S and hence N holds for i′ and j′. Suppose x̂j′ < xj′ . Then

Si′(σ(δ)) = {db(x̂j′)} and Sj′(σ(δ)) = ∅ and we need to verify condition N
for i′. Denote

z0=xi′ + 2δrt′,a(xm − xi′)

z1=xi′ + 2δ(rt′,b − ri′)(xm − xi′)

z2=xi′ + 2δ(rt′,a − rj′)(xm − xi′)

z3=xi′

(A17)

and note that z0 = x̂i′ and z1 = db(x̂j′). From definitions of rnc,a and

rnc,b, rnc,a(x|σ(δ)) = rt′,a for ∀x ∈ (z0, z1), rnc,a(x|σ(δ)) = rt′,a − rj′ for

∀x ∈ (z1, z3) and rnc,b(x|σ(δ)) = rt′,b − ri′ for ∀x ∈ (z0, z1) ∪ (z1, z3).

To verifying condition N for i′, we first verify condition S, which suffices

for N, and only when it fails directly verify N. From Si′(σ(δ)) = {db(x̂j′)},
condition S for i′ writes

db(x̂j′)− xi′ − 2δ(rt′,a − rj′)(xm − xi′) ≤ 0 (A18)

which is equivalent to 2δ(xm−xi′)(rt′,b− rt′,a+ rj′ − ri′) ≤ 0. The condition

holds if rj′ ≤ ri′ because rt′,b ≤ rt′,a and xm − xi′ > 0. Assume rj′ > ri′

and that condition S fails for i′, that is rt′,b − rt′,a + rj′ − ri′ > 0. Because

rt′,a > rt′,b− ri′ , we have rt′,a > rt′,b− ri′ > rt′,a− rj′ so that z0 > z1 > z2 >

z3. To verify condition N, Ni′(σ(δ)) = {z0, z1, z2, z3} is easy to see from the

definition of Ni and direct substitution of expressions for rnc,a and rnc,b into

Ti′(x|σ(δ)) gives

Ti′(x|σ(δ)) = − 2
1−δ(rt′,a′+rt′,b−ri′ )

[
x2

2
− x · z0

]
if x ∈ (z0, z1)

Ti′(x|σ(δ)) = − 2
1−δ(rt′,a′+rt′,b−ri′−rj′ )

[
x2

2
− x · z2

]
if x ∈ (z1, z3).

(A19)

Condition N writes
∑3

j=1 Ti′(z
−
j−1|σ(δ)) − Ti′(z

+
j |σ(δ)) ≥ 0. Each of the
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three terms in the condition rewrites

Ti′(z
−
0 |σ(δ))− Ti′(z+1 |σ(δ)) =

(z0 − z1)2

1− δ(rt′,a + rt′,b − ri′)

Ti′(z
−
1 |σ(δ))− Ti′(z+2 |σ(δ)) =

−(z1 − z2)2

1− δ(rt′,a + rt′,b − ri′ − rj′)

Ti′(z
−
2 |σ(δ))− Ti′(z+3 |σ(δ)) =

(z2 − z3)2

1− δ(rt′,a + rt′,b − ri′ − rj′)

(A20)

The first and the third term are clearly positive. Condition N thus holds

if Ti′(z
−
0 |σ(δ)) − Ti′(z+1 |σ(δ)) + Ti′(z

−
1 |σ(δ)) − Ti′(z+2 |σ(δ)) ≥ 0. Dropping

positive constants, this condition writes

(rt′,a − rt′,b + ri′)
2

1− δ(rt′,a + rt′,b − ri′)
−

(rt′,b − rt′,a − ri′ + rj′)
2

1− δ(rt′,a + rt′,b − ri′ − rj′)
≥ 0. (A21)

The denominator of the first terms is smaller than the denominator of the

second one, so the condition holds if

(rt′,a − rt′,b + ri′)
2 − (rt′,b − rt′,a − ri′ + rj′)

2 ≥ 0 (A22)

or ri′ + rt′,a − rt′,b ≥
rj′
2 . Because rt′,a ≥ rt′,b, ri′ ≥

rj′
2 suffices for N to hold

for player i′.

To finish the proof, we know that if ri′ ≥
rj′
2 , then condition N holds for

i′ and j′ if rt′,a ≥ rt′,b. For rt′,a ≤ rt′,b, symmetric argument would lead to

rj′ ≥
ri′
2 , or ri′ ≤ 2rj′ . These two conditions jointly require ri′ ∈ [

rj′
2 , 2rj′ ].

Finally, we assumed that {i′, j′} is pair of players with the largest i′ among

the pairs of player with d(xi) = d(xj). The proof can now proceed to a

pair of players {i′′, j′′} such that d(xi′′) = d(xj′′) and i′′ < i′. Identical

argument gives ri′′ ∈ [
rj′′
2 , 2rj′′ ] and considering any further pair of players

with d(xi) = d(xj) leads to the very same condition. �

A1.9 Proof of Lemma 6

To prove part 1, that G1 implies G2 when ri ≤ ri+1 for ∀i ∈ {1, . . . , n−32 },
we have for ∀i ∈ {1, . . . , n−32 } and ∀j ∈ {1, . . . , i}

1− 2δrej−1
1− 2δrej

1
≤ 1− 2δrei

1− 2δrei+1

2
≤ xm − xi
xm − xi+1

3
≤ xm − xj
xm − xi+1

. (A23)
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2
≤ is condition G1.

3
≤ follows from

xm−xj
xm−xi+1

decreasing in j. To see
1
≤,

note that
1−2δrei−1

1−2δrei
≤ 1−2δrei

1−2δrei+1
holds for ∀i ∈ {1, . . . , n−32 }. It rewrites as

(ri+1 − ri)(1 − 2δrei ) + 2δriri+1 ≥ 0 for i ∈ {1, . . . , n−32 } and clearly holds

when ri ≤ ri+1 for ∀i ∈ {1, . . . , n−32 }. Subsequently
1
≤ has to hold for any

j ∈ {1, . . . , i}. The outer inequality in (A23) is condition G2.

To prove part 2, that G1 implies G2 when xi − xi−1 ≤ xi+1 − xi for

∀i ∈ {2, . . . , n−32 } and 1
1−2δr1 ≤

xm−x1
xm−x2 , we have for ∀j ∈ {2, . . . , n−32 } and

∀i ∈ {j, . . . , n−32 }

1− 2δrej−1
1− 2δrej

1
≤ xm − xj−1

xm − xj
2
≤ xm − xj
xm − xj+1

3
≤ xm − xj
xm − xi+1

. (A24)

1
≤ is condition G1.

3
≤ follows from

xm−xj
xm−xi+1

increasing in i. To see
2
≤,

note that xm−xi−1

xm−xi ≤
xm−xi
xm−xi+1

holds for ∀i ∈ {2, . . . , n−32 }. It rewrites as

(xm − xi)(di+1 − di) + di+1di ≥ 0 for i ∈ {2, . . . , n−32 } where di = xi − xi−1
and clearly holds when xi+1−xi = di+1 ≥ di = xi−xi−1. The outer equality

in (A24) is condition G2 except when j = 1 and i ∈ {1, . . . , n−32 }. For these

values of j and i, G2 reads 1
1−2δr1 ≤

xm−x1
xm−xi+1

and holds by the virtue of
1

1−2δr1 ≤
xm−x1
xm−x2 and the fact that the right hand side of the inequality is

increasing in i. �

A1.10 Proof of Proposition 5

When δ = 0 in part 1 clearly x̂ = x so assume δ ∈ (0, 1). To show that

there exists 2(n−1)/2 distinct sets of x̂ algorithm 1 produces in pairwise path

and that any of these constitutes SMPE, we first show that any x̂ produced

has special structure. Recall that the algorithm starts with step 0 in which

it drops player m and that it finishes in n − 1 steps. We want to show

that, for any pairwise moderation inducing G, the algorithm in every odd

step t ∈ {1, 3, . . . , n− 2} gives option to drop players {m− t′,m+ t′} where

t′ = t+1
2 . Dropping one of the players we want the other player to be dropped

in the subsequent step t+1. This implies that in any odd step t, the number

of players still in the algorithm is even and half of them comes from Na while

the other half from Nb.

Suppose the algorithm exhibited such behaviour in all steps until step t ∈
{1, 3, . . . , n−4} and hence already dropped players {m−t′+1, . . . ,m+t′−1}.
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In t, the algorithm computes x̂i,t = xi+ 2δrem−t′(xm−xi) for all players still

in the algorithm and gives choice to drop players {m− t′,m+ t′}. Assume,

without loss of generality, that m + t′ ∈ Na is dropped. Then in t + 1, the

algorithm computes, for the retained players,

x̂i,t+1 = xi + 2δrem−t′(xm − xi) if i ∈ Na

x̂i,t+1 = xi + 2δrem−t′−1(xm − xi) if i ∈ Nb.
(A25)

The algorithm at this points drops player with x̂i,t+1 closest to xm. There

are two possible candidates, m−t′ ∈ Nb not dropped in t and m+t′+1 ∈ Na.

We want the algorithm to drop m − t′.35 This will be the case whenever

xm − x̂m−t′,t+1 ≤ x̂m+t′+1,t+1 − xm. This inequality rewrites as

1− 2δrem−t′−1
1− 2δrem−t′

≤ xm − xm−t′−1
xm − xm−t′

(A26)

where we have already used xm+t′+1 − xm = xm − xm−t′−1, which follows

from the symmetry of G. Setting i = m−t′−1 and using t ∈ {1, 3, . . . , n−4},
we have i ∈ {1, . . . , n−32 }. (A26) is thus equivalent to condition G1. Pairwise

path through the algorithm from definition 8 then ensures that the desired

structure of x̂ arises even when (A26) holds with equality. As there is n−1
2

odd steps in the algorithm each of them giving option to drop one out of

two players, the multiplicity of x̂ evaluates at 2(n−1)/2.

To see that any x̂ produced constitutes SMPE, we will show that it

satisfies condition S when G induces pairwise moderation. Fix x̂ from algo-

rithm 1 produced for pairwise moderation inducing G and induced σ. Take

player i ∈ {1, . . . , n−12 } = Nb. For players in Na the argument is symmetric

and omitted. Suppose the algorithm dropped player i producing x̂i. The

set of players dropped subsequently is {1, . . . , i − 1} ∪ {dIa(i), . . . , n}. Only

these players can produce points in ND(σ) in the interval [xi, x̂i], that is

points defining Si(σ) = ND(σ) ∩ (xi, x̂i) used in condition S. Furthermore,

from (A6) we know that for any j′ ∈ Nb and i ∈ Nb, sgn [U ′i(x̂
−
j |σ)] =

sgn [U ′i(x̂
+
j |σ)], so we will concern ourselves only with checking condition S

for those points in Si(σ) induced by players j ∈ {dIa(i), . . . , n} being dropped

by algorithm 1. If condition S holds for these points, it has to holds for all

points in Si(σ).

35 No condition is necessary for the last odd step, n − 2, which is followed by the last
step of the algorithm with only one player remaining.
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For any j ∈ {dIa(i), . . . , n} algorithm 1, by pairwise moderation, produces

either x̂j = xj + 2δre
dIb(j)

(xm − xj) or x̂j = xj + 2δre
dIb(j)−1

(xm − xj). By

symmetry of G we can map these below xm into db(x̂j) = xj′+2δrej′(xm−xj′)
or db(x̂j) = xj′ + 2δrej′−1(xm − xj′) for j′ = dIb(j) ∈ {1, . . . , i}. Condition S
evaluated for i ∈ Nb and dx(x̂j) becomes

xj′ + 2δrej′(xm − xj′)− xi − 2δrej′−1(xm − xi) ≤ 0

xj′ + 2δrej′−1(xm − xj′)− xi − 2δrej′−1(xm − xi) ≤ 0
(A27)

where we used rnc,a(x
−|σ) = rej′−1; when j is dropped by the algorithm,

j′ − 1 players in Na remain on non-constant part of their strategy as we

approach x̂j′ from below.

When j′ = i, i has to have been dropped by algorithm 1 first out of pair

{i, dIa(i)} of players. This implies x̂j′ = xj′ + 2δrej′−1(xm − xj′) so that only

the second line of (A27) applies and the left hand side evaluates to 0. When

j′ < i both lines of (A27) apply but from rej′(xm− xj′) > rej′−1(xm− xj′), if

the first line holds the second one has hold as well. The first line rewrites as

1− 2δrej′−1
1− 2δrej′

≤
xm − xj′
xm − xi

(A28)

and needs to hold for i ∈ {2, . . . , n−12 } and j′ ∈ {1, . . . , i−1}, where we have

already adjusted for the fact that we only need to take care of cases when

i > j′. Rewriting the condition as

1− 2δrej−1
1− 2δrej

≤ xm − xj
xm − xi+1

(A29)

for ∀i ∈ {1, . . . , n−32 } and ∀j ∈ {1, . . . , i}, we get condition G2.

To summarize, when G induces pairwise moderation, conditions G1 and

G2 hold by definition 7. Condition G1 implies that any x̂ produced by

pairwise path through algorithm 1 has special structure that allowed us to

use condition G2 to show that condition S holds, which by Proposition 3

implies that σ induced by x̂ constitutes SMPE.

What remains is to show that Ui is single peaked on X for ∀i ∈ N . For

m we already know the claim is true by Lemma 2 part 5. Consider i ∈ Na

omitting again the symmetric argument for players in Nb. By condition S,

Ui is single peaked for x ≥ xm. For x ≤ xm and any x ∈ D(σ), from (A6)
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we need x− xi − 2δrnc,a(x|σ)(xm − xi) ≤ 0. This follows from x ≤ xm and

1− 2δrnc,a(x|σ) > 0 as rnc,a(x|σ) ≤ 1
2 for any symmetric G. �

A1.11 Proof of Proposition 6

Fix x̂ produced by pairwise path through algorithm 1. Denote by ti for

∀i ∈ N step of the algorithm at which i has been dropped. Note that ti is

decreasing in i for i ∈ Nb ∪ {m} and increasing in i for i ∈ Na ∪ {m}. We

construct the perturbation of x by ε > 0, x(ε), the proposition postulates as

x(ε) = {x1 + ε
t1
, . . . , xm−1 + ε

tm−1
, xm, xm+1 − ε

tm+1
, . . . , xn − ε

tn
} (A30)

where limε→0 x(ε) = x is immediate. Note also that there exists ε̄ such

that, for ∀ε ≤ ε̄, xm−1(ε) < xm < xm+1(ε) and hence xi(ε) < xi+1(ε) for

∀i ∈ N \ {n}.
We now show that algorithm 1 for G(ε) = 〈n,x(ε), r, δ,X〉 produces

unique x̂(ε) and that the order in which players are dropped during construc-

tion of x̂(ε) and x̂ is the same. Recall that, when producing x̂, algorithm

1 in step t ∈ {1, 3, . . . , n − 2} dropped one of players from {m − t′,m + t′}
where t′ = t+1

2 and the other player in step t + 1. We need to show the

algorithm (uniquely) mimics this behaviour when constructing x̂(ε).

Assume the algorithm has done so until step t ∈ {1, 3, . . . , n − 2} and

hence already dropped players {m−t′+1, . . . ,m+t′−1}. In t, the algorithm

computes x̂i,t = xi + 2δrem−t′(xm − xi) + ε
ti

(1 − 2δrem−t′) for ∀i ∈ Nb and

x̂i,t = xi + 2δrem−t′(xm − xi) −
ε
ti

(1 − 2δrem−t′) for ∀i ∈ Na. Only players

m − t′ ∈ Nb or m + t′ ∈ Na can be dropped in t and we need to show the

former is dropped if tm−t′ < tm+t′ and the latter is dropped if tm−t′ > tm+t′ .

Calculating d(x̂m−t′,t) and d(x̂m+t′,t),

d(x̂m−t′,t) = d(xm−t′)(1− 2δrem−t′)− ε
tm−t′

(1− 2δrem−t′)

d(x̂m+t′,t) = d(xm+t′)(1− 2δrem−t′)− ε
tm+t′

(1− 2δrem−t′).
(A31)

Because d(xm−t′) = d(xm+t′) and 1 − 2δrem−t′ > 0, tm+t′ < tm−t′ implies

d(x̂m+t′,t) < d(x̂m−t′,t) and tm+t′ > tm−t′ implies d(x̂m+t′,t) > d(x̂m−t′,t), as

desired.

We now show that out of pair of players {m − t′,m + t′}, the one not

dropped in step t is uniquely dropped in step t+ 1. Assume, without loss of
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generality, that m+ t′ ∈ Na is dropped in step t. In step t+ 1 the algorithm

computes, for the retained players,

x̂i,t+1 = xi + 2δrem−t′−1(xm − xi) + ε
ti

(1− 2δrem−t′−1) if i ∈ Nb

x̂i,t+1 = xi + 2δrem−t′(xm − xi)− ε
ti

(1− 2δrem−t′) if i ∈ Na.
(A32)

which, for the pair of players {m− t′,m+ t′+ 1} that can be dropped, gives

d(x̂m−t′,t+1) = d(xm−t′)(1− 2δrem−t′−1)− ε
tm−t′

(1− 2δrem−t′−1)

d(x̂m+t′+1,t+1) = d(xm+t′+1)(1− 2δrem−t′)− ε
tm+t′+1

(1− 2δrem−t′).
(A33)

We know d(xm−t′)(1 − 2δrem−t′−1) ≤ d(xm+t′+1)(1 − 2δrem−t′) because G
induces pairwise moderation. To show d(x̂m−t′,t+1) < d(x̂m+t′+1,t+1), it thus

suffices to show
1−2δre

m−t′−1

tm−t′
>

1−2δre
m−t′

tm+t′+1
, which follows from tm−t′ < tm+t′+1

and rem−t′−1 < rem−t′ .

Because algorithm 1, when constructing x̂ and x̂(ε), dropped players in

the identical order, we have, for any i ∈ Na, x̂i = xi + 2δr′(xm − xi) and

x̂i(ε) = xi + 2δr′(xm − xi) − ε
ti

(1 − 2δr′), where r′ is the probability the

algorithm used in step ti. Clearly limε→0 x̂i(ε) = x̂i for ∀i ∈ Na. Using

similar argument for i ∈ Nb and noting x̂m = x̂m(ε) shows limε→0 x̂(ε) = x̂.

To show that x̂(ε) satisfies condition S, take player i ∈ {1, . . . , n−12 } =

Nb. For players in Na the argument is symmetric and omitted. The set of

players dropped subsequently is {1, . . . , i−1}∪{dIa(i), . . . , n}. Using similar

argument as in the proof of Proposition 5, when x̂(ε) induces σ(ε), we only

need to check condition S for those points in Si(σ(ε)) induced by players

j ∈ {dIa(i), . . . , n} being dropped by algorithm 1. For any j ∈ {dIa(i), . . . , n}
algorithm 1 produces either x̂j = xj + 2δre

dIb(j)
(xm−xj)− ε

tj
(1− 2δre

dIb(j)
) or

x̂j = xj + 2δre
dIb(j)−1

(xm−xj)− ε
tj

(1− 2δre
dIb(j)−1

). Mapping these below xm

and using j′ = dIb(j) gives db(x̂j) = xj′ + 2δrej′(xm− xj′) + ε
tj

(1− 2δrej′) and

db(x̂j) = xj′ + 2δrej′−1(xm−xj′)−
ε
tj

(1−2δrej′−1). Condition S evaluated for
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i ∈ Nb and db(x̂j) becomes

xj′ + 2δrej′(xm − xj′)− xi − 2δrej′−1(xm − xi) +

ε

[
1−2δre

j′
tj

−
1−2δre

j′−1

ti

]
≤ 0

xj′ + 2δrej′−1(xm − xj′)− xi − 2δrej′−1(xm − xi) +

ε

[
1−2δre

j′−1

tj
−

1−2δre
j′−1

ti

]
≤ 0

(A34)

and we know, since G induces pairwise moderation, that it holds for ∀i ∈
{1, . . . , n−12 } and ∀j′ ∈ {1, . . . , i} when ε = 0. Noting that ti < tj and

rej′−1 < rej′ , each of the terms in the square brackets in the condition is

non-positive, showing that condition S holds for x̂(ε) as well. �

A1.12 Proof of Proposition 7

Take G that induces pairwise moderation. From proof of Proposition 5, we

know that for any pair of players {i, i′} with i ∈ {1, . . . , n−12 } and i′ = dIa(i),

pairwise path through algorithm 1 produces one of the following pairs of

SMPE strategic bliss points

(x̂i, x̂i′) = (xi + 2δrei−1(xm − xi), xi′ + 2δrei (xm − xi′))

(x̂′i, x̂
′
i′) = (xi + 2δrei (xm − xi), xi′ + 2δrei−1(xm − xi′))

(A35)

and we have, by symmetry of G,

d(x̂i) = d(x̂′i′) = (xm − xi)(1− 2δrei−1)

d(x̂i′) = d(x̂′i) = (xm − xi)(1− 2δrei ).
(A36)

Denote by x̂ with associated σ the set of strategic bliss points of which

the first pair in (A35) is part of and associate x̂′ and σ′ with the second

pair. Assume x̂ and x̂′ differ only in terms of the strategic bliss points

of {i, i′} and note that because G is symmetric, ri = ri′ . If, for some

status-quo x, both i and i′ propose their strategic bliss points, we have

rid(x̂i)+ri′d(x̂i′) = rid(x̂′i)+ri′d(x̂′i′) and hence E[d(p(x|σ))] = E[d(p(x|σ′))].
The same equality holds if x is such that i and i′ propose db(x) and da(x)

respectively under σ, they propose the same policies under σ′. If x is such

that i and i′ propose db(x) and x̂i′ respectively under σ, the only remaining
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case possible as d(x̂i) > d(x̂i′), they propose x̂′i and da(x) under σ′ and

we have rid(db(x)) + ri′d(x̂i′) = rid(x̂′i) + ri′d(da(x)). If x̂ and x̂′ differ in

terms of other pairs of players, we just repeat the same argument. Hence

E[d(p(x|σ))] = E[d(p(x|σ′))].
Finally, from d(x̂i) = d(xi)(1 − 2δrei−1) and d(x̂i′) = d(xi)(1 − 2δrei ), it

is straightforward to see that E[d(p(x|σ))] is non-increasing in δ and ri for

i 6= m and non-decreasing in d(xi). �

A1.13 Proof of Proposition 8

Part 1 follows from the shape of the acceptance set A(x|σ) = [db(x), da(x)]

for any status-quo x ∈ X and any SMPE σ from Proposition 5. To see part

2, note that under the simple proposal strategies from definition 4, every

player i ∈ N for any status-quo x ∈ X proposes either her strategic bliss

point x̂i or policy in {db(x), da(x)}. The claim then follows from d(x) =

d(db(x)) = d(da(x)). For part 3, we have pi(x|σ) 6= xm for ∀i ∈ N \{m} and

∀x ∈ X \ {xm}. Hence P[d(pt) > 0] is equal to the probability that, starting

with status-quo x 6= xm, m has not been recognized to propose in periods

{0, 1, . . . , t}, which is (1− rm)t+1. For part 4, as d(pt) is non-increasing in t

for any path of proposer identities (part 1), the number of players proposing,

for status-quo pt−1, pt with d(pt) = d(pt−1) is non-decreasing and so is the

sum of their recognition probabilities. Finally, part 5 follows from the fact

that for any status-quo x 6= xm, all the players in Na propose policy strictly

above xm and all the players in Nb propose policy strictly below xm. �

A1.14 Proof of Proposition 9

To prove part 1, we need to consider several cases.

Case 1: When d(x1) = d(x3), algorithm 1 produces set of strategic bliss

points x̂ either with x̂1 = x1 and x̂3 = max {x2, x3 + 2δr1(x2 − x3)} or with

x̂1 = min {x2, x1 + 2δr3(x2 − x1)} and x̂3 = x3 (when r1 = r3 both are

possible, when r1 6= r3 only one is). In either case Si(σ) = ∅ for i ∈ {1, 3},
condition S holds and σ induced by x̂ constitutes SMPE.

Case 2: When d(x1) 6= d(x3) and d(xe)(1 − 2δr−e) > d(x−e)(1 − 2δre),

algorithm 1 produces x̂ either with x̂e = xe and x̂−e = x−e+2δre(xm−x−e)
or with x̂e = xe and x̂−e = xm (when δre <

1
2 the former applies and when

δre ≥ 1
2 the latter applies). In either case Si(σ) = ∅ for i ∈ {1, 3}, condition
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S holds and σ induced by x̂ constitutes SMPE.

Case 3: When d(x1) 6= d(x3) and d(xe)(1 − 2δr−e) = d(x−e)(1 − 2δre),

algorithm 1 produces x̂, due to 1 − 2δri > 0 for i ∈ {1, 3} and implied

δr−e <
1
2 , either with x̂e = xe and x̂−e = x−e + 2δre(xm − x−e) or with

x̂e = xe + 2δr−e(xm − xe) and x̂−e = x−e. In the former case Si(σ) = ∅ for

i ∈ {1, 3}, condition S holds and σ induced by x̂ constitutes SMPE.36 In the

latter case, easy argument shows that condition S fails and we need to check

condition N for σ induced by x̂e = xe + 2δr−e(xm − xe) and x̂−e = x−e.

Assume that e = 3. The argument when e = 1 is symmetric and omitted.

Because x̂1 = x1 and x̂3 = x3+2δr1(x2−x3), we have S1(σ) = ∅ andN3(σ) =

{x̂3, da(x1), x3}. That da(x1) ∈ (x̂3, x3) follows from the conditions defining

this case d(x3)(1 − 2δr1) = d(x1)(1 − 2δr3) < d(x1) and d(x3) > d(x1)

and L3(σ) ∩ (x̂3, x3) = ∅ follows from U ′3(x|σ) < 0 for ∀x ∈ (x̂3, da(x1))

and U ′3(x|σ) > 0 for ∀x ∈ (da(x1), x3). To evaluate condition N for player

3, we have T3(x|σ) = −2
1−δr1

[
x2

2 − x̂3x
]

for x ∈ (x̂3, da(x1)) and T3(x|σ) =

−2
[
x2

2 − x3x
]

for x ∈ (da(x1), x3). Condition N then rewrites as

−2

1− δr1

[
x2

2
− x̂3x

]x̂+3
da(x1)−

≥ 0

−2

1− δr1

[
x2

2
− x̂3x

]x̂+3
da(x1)−

− 2

[
x2

2
− x3x

]da(x1)+
x−3

≥ 0.

(A37)

The first inequality rewrites as 1
1−δr1 [d(x̂3)− d(x1)]

2 ≥ 0 and clearly holds.

The second inequality rewrites as 1
1−δr1 [d(x̂3)−d(x1)]

2−[d(x1)−d(x3)]
2 ≥ 0,

can be expressed as condition Be for δr1 <
1
2 and hence holds.

Case 4: When d(x1) 6= d(x3) and d(xe)(1 − 2δr−e) < d(x−e)(1 − 2δre),

algorithm 1 produces x̂ either with x̂e = xe+2δr−e(xm−xe) and x̂−e = x−e

or with x̂e = xm and x̂−e = x−e (when δr−e < 1
2 the former applies

and when δr−e ≥ 1
2 the latter applies). Condition S fails in both cases

and we need to check condition N for σ induced by x̂e and x̂−e. As-

sume that e = 3. The argument when e = 1 is symmetric and omit-

ted. Because x̂1 = x1 and x̂3 = max {x2, x3 + 2δr1(x2 − x3)}, we have

S1(σ) = ∅ and N3(σ) = {x̂3, da(x1), x3}. That da(x1) ∈ (x̂3, x3) follows

from similar argument as in the previous case. To evaluate condition N for

36 If case 3 applies and condition E fails, Proposition 10 part 2 obtains. That x̂e = xe
with x̂−e = x−e + 2δre(xm − x−e) constitutes SMPE follows by Si(σ) = ∅ for i ∈ {1, 3}.
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player 3, when δr1 < 1
2 , we have the same expressions for T3(x|σ) as in

the previous case and condition N thus holds by similar argument. When

δr1 ≥ 1
2 , T3(x|σ) = −2

1−δr1

[
x2

2 − (x3 + 2δr1(x2 − x3))x
]

for x ∈ (x̂3, da(x1))

and T3(x|σ) = −2
[
x2

2 − x3x
]

for x ∈ (da(x1), x3). Condition N rewrites as

[T3(x|σ)]
x+2
da(x1)−

≥ 0

[T3(x|σ)]
x+2
da(x1)−

+ [T3(x|σ)]
da(x1)+

x−3
≥ 0.

(A38)

The first inequality rewrites as d(x1)
1−δr1 [d(x1)− 2d(x3)(1− 2δr1)] ≥ 0 and

clearly holds as 1− 2δr1 ≤ 0. The second inequality rewrites as

d(x1)

1− δr1
[d(x1)− 2d(x3)(1− 2δr1)]− [d(x1)− d(x3)]

2 ≥ 0, (A39)

can be expressed as condition Be for δr1 ≥ 1
2 and hence holds.

We leave proof of part 2, existence of SMPE in adjusted simple proposal

strategies, for proof of Proposition 10. There we deal with the adjusted

simple strategies in full detail (see footnote 38).

To prove part 3, we note that single-peakedness of U1 on {x ∈ X|x ≤ xm}
and of U3 on {x ∈ X|x ≥ xm} obtains when condition S holds for both

players for x̂ that induces SMPE σ. Reviewing the cases above, condition S
holds in case 1 (d(x1) = d(x3)), case 2 (d(xe)(1−2δr−e) > d(x−e)(1−2δre))

and in case 3 (d(xe)(1 − 2δr−e) = d(x−e)(1 − 2δre)) when x̂e = xe, that

is when the algorithm 1 drops player −e in step 1. From (A6) we then

have single-peakedness of U1 and U3 on X when δr1 ≤ 1
2 and δr3 ≤ 1

2

respectively. �

A1.15 Proof of Proposition 10

We start by observing that we have already proved part 2 of the proposition

when proving Proposition 9 (see footnote 36). What remains is part 1.

Suppose Ae holds, that is d(xe)(1− 2δr−e) ≤ d(x−e)(1− 2δre) and d(x1) 6=
d(x3). Algorithm 1 produces (dropping e in step 1 if given choice) x̂ either

with x̂e = xe + 2δr−e(xm − xe) and x̂−e = x−e or with x̂e = xm and

x̂−e = x−e, inducing σ.

Assume e = 3. When e = 1 the argument is symmetric and omitted.

Then we have x̂1 = x1 and x̂3 = max {x2, x3 + 2δr1(x2 − x3)}. Denote by σ′
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profile of strategies induced by x̂ = {x1, x2,max {x2, x3 + 2δr1(x2 − x3)}}.
Trivially condition S holds for player 1 and it is easy to see that it fails for

player 3. Using the similar arguments as when proving case 3 of Proposition

9, we have N3(σ
′) = {x̂3, da(x1), x3} with da(x1) ∈ (x̂3, x3).

Denote by σ′′ = (x1, x2, (x̂3, xa)) profile of simple adjusted proposal

strategies, with xa from definition 10. Note that da(x1) < xa, when δr1 <
1
2

the inequality is equivalent to [d(x̂3) − d(x1)]
2 > 0 and when δr1 ≥ 1

2 the

inequality is equivalent to d(x1)− 2d(x3)(1− 2δr1) > 0, and xa < x3, which

follows from failure of Be. We want to show σ′′ constitutes SMPE.

Lemma A3.

1. U3(x|σ′′) is continuous, U ′3(x|σ′′) > 0 for ∀x ∈ (x2, x̂3) ∪ (da(x1), x3)

and U ′3(x|σ′′) < 0 for ∀x ∈ (x̂3, da(x1)) ∪ (x3, sup {X})

2. U2(x|σ′′) is continuous on X \ {db(xa), da(xa)}, U2(db(xa)
−|σ′′) <

U2(db(xa)|σ′′) and for ∀x ∈ (inf {X}, x2) \ {db(x3), db(xa), x1, db(x̂3)},
U ′2(x|σ′′) > 0

3. U1(x|σ′′) is continuous on X \ {db(xa), da(xa)}, U1(db(xa)
−|σ′′) <

U1(db(xa)|σ′′), U ′1(x|σ′′) > 0 for ∀x ∈ (inf {X}, x1) \ {db(x3), db(xa)}
and U ′1(x|σ′′) < 0 for ∀x ∈ (x1, db(x̂3)) ∪ (db(x̂3), x2)

Proof. We start by deriving xa given in definition 10. xa is implicitly defined

by U3(x̂3|σ′) = U3(xa|σ′). It can be found by solving

[
T3(x|σ′)

]x̂+3
da(x1)−

+
[
T3(x|σ′)

]da(x1)+
x−a

= 0 (A40)

where T3(x|σ′) = −2
1−δr1

[
x2

2 − (x3 + 2δr1(x2 − x3))x
]

for x ∈ (x̂3, da(x1))

and T3(x|σ′) = −2
[
x2

2 − x3x
]

for x ∈ (da(x1), x3).
37 Carrying out the

straightforward algebra gives xa from definition 10. By Lemma 2 part 5 we

also have U2(x̂3|σ′) > U2(xa|σ′) and by implication U1(x̂3|σ′) > U1(xa|σ′),
using similar argument to the one used to prove Proposition 1.

Next we note Vi(x|σ′) = Vi(x|σ′′) and thus Ui(x|σ′) = Ui(x|σ′′) for ∀x ∈
[db(xa), da(xa)] and ∀i ∈ {1, 2, 3}. This follows from the fact that σ′ and

σ′′ induce identical proposed policies for any status-quo x ∈ [db(xa), da(xa)]

37 The equation is condition N with the last evaluation point being xa instead of x3. xa
can be thought of as being the largest point in (da(x1), x3) such that U3(x|σ′) ≤ U3(x̂3|σ′)
holds. That xa is unique follows from U ′3(x|σ′) > 0 on (da(x1), x3).
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and that any proposed policy for status-quo x ∈ [db(xa), da(xa)] falls within

the [db(xa), da(xa)] interval.

To establish the claimed continuity properties, that Ui(x|σ′′) is con-

tinuous for ∀i ∈ {1, 2, 3} and ∀x ∈ X \ {db(xa), da(xa)} can be shown

using similar arguments as in proof of Lemma 2 part 3. For xa previ-

ous paragraph implies Vi(db(xa)|σ′′) = Vi(db(xa)
+|σ′′). What remains is

then Vi(db(xa)
−|σ′′) < Vi(db(xa)|σ′′) for i ∈ {1, 2} and V3(db(xa)

−|σ′′) =

V3(db(xa)|σ′′). By symmetry of Vi for ∀i ∈ {1, 2, 3} about x2, this will

imply Vi(da(xa)|σ′′) > Vi(da(xa)
+|σ′′) for i ∈ {1, 2} and V3(da(xa)|σ′′) =

V3(da(xa)
+|σ′′). Denote Ti(σ′′) =

∑
j∈{1,2} rj [ui(xj) + δVi(xj |σ′′)]. Then

V3(db(xa)|σ′′) = r3[u3(x̂3) + δV3(x̂3|σ′′)] + T3(σ′′)
1
= r3[u3(x̂3) + δV3(x̂3|σ′)] + T3(σ′′)
2
= r3[u3(xa) + δV3(xa|σ′)] + T3(σ′′)
3
= r3[u3(xa) + δV3(xa|σ′′)] + T3(σ′′)
4
=
r3u3(xa) + T3(σ′′)

1− δr3

(A41)

where
1
= follows from x̂3 ∈ [db(xa), da(xa)],

2
= follows from definition of xa,

3
= follows from xa ∈ [db(xa), da(xa)] and

4
= follows from xa = da(xa) and

V3(da(xa)|σ′′) = V3(db(xa)|σ′′). Now for any x ∈ [db(x3), db(xa)) we have

V3(x|σ′′) = r3[u3(da(x)) + δV3(da(x)|σ′′)] + T3(σ′′)

=
r3u3(da(x)) + T3(σ′′)

1− δr3

V3(db(xa)
−|σ′′) =

r3u3(da(db(xa)
−)) + T3(σ′′)

1− δr3
= V3(db(xa)|σ′′)

(A42)

by continuity of u3 and da. Similarly for i ∈ {1, 2}

Vi(db(xa)|σ′′) = r3[ui(x̂3) + δVi(x̂3|σ′′)] + Ti(σ′′)
1
= r3[ui(x̂3) + δVi(x̂3|σ′)] + Ti(σ′′)
2
> r3[ui(xa) + δVi(xa|σ′)] + Ti(σ′′)
3
= r3[ui(xa) + δVi(xa|σ′′)] + Ti(σ′′)
4
=
r3ui(xa) + Ti(σ′′)

1− δr3

(A43)
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where
1
=,

3
= and

4
= follow from similar arguments as above and

2
> follows

from Ui(x̂3|σ′) > Ui(xa|σ′) for i ∈ {1, 2}. Again for any x ∈ [db(x3), db(xa))

and i ∈ {1, 2} we have

Vi(x|σ′′) = r3[ui(da(x)) + δVi(da(x)|σ′′)] + Ti(σ′′)

=
r3ui(da(x)) + Ti(σ′′)

1− δr3

Vi(db(xa)
−|σ′′) =

r3ui(da(db(xa)
−)) + Ti(σ′′)

1− δr3
< Vi(db(xa)|σ′′)

(A44)

by continuity of ui and da.

To establish the sign inequalities on U ′i(x|σ′′), for x ∈ [db(xa), da(xa)] and

when the derivative exists, we can use (A6). The claim is then immediate

from

rnc,a(x|σ′′) =

r3 for ∀x ∈ (x2, x̂3)

0 for ∀x ∈ (x̂3, da(x1)) ∪ (da(x1), xa)

rnc,b(x|σ′′) =

r1 for ∀x ∈ (x2, x̂3) ∪ (x̂3, da(x1))

0 for ∀x ∈ (da(x1), xa)

(A45)

using symmetry of rnc,a and rnc,b about x2. For x /∈ [db(xa), da(xa)], U
′
i(x|σ′′)

can still be computed as in (A6) except when the derivative does not ex-

ist, that is except at {db(x3), da(x3)}. The claim is again immediate us-

ing rnc,a(x|σ′′) = r3 for ∀x ∈ (xa, x3), rnc,a(x|σ′′) = 0 for x > x3 and

rnc,b(x|σ′′) = 0 for ∀x ∈ (xa, x3) ∪ (x3, sup {X}). �

From Lemma A3 we know that A(x|σ′′) = [db(x), da(x)]. The same

lemma implies that for any x ∈ X, solution to maxz∈A(x|σ′′) U2(z|σ′′) is

x2. Solution to maxz∈A(x|σ′′) U1(z|σ′′) is easily seen to be db(x) for ∀x ∈
[db(x1), da(x1)] and x1 for ∀x /∈ [db(x1), da(x1)]. Best response of players 1

and 2 to σ′′ = (x1, x2, (x̂3, xa)) are thus x̂1 = x1 and x̂2 = x2 respectively.

Again from Lemma A3, solution to maxz∈A(x|σ′′) U3(z|σ′′) is da(x) for ∀x ∈
[x2, x̂3] ∪ (xa, x3), x̂3 for ∀x ∈ (x̂3, xa) and x3 for x ≥ x3. At xa, player 3 is

indifferent between proposing x̂3 and xa as U3(x̂3|σ′′) = U3(xa|σ′′), both of

which solve her optimization problem. Her best response to σ′′ can thus be

described by ~σ3 = (x̂3, xa). As a result σ′′ constitutes SMPE.38 �

38 When Ae holds and Be holds with equality, we are in Proposition 9 part 2. Be
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A1.16 Proof of Proposition 11

The proposition is an implication of Banks and Duggan (2006b). We present

full proof in order to demonstrate dependence of the result on the Euclidean

utilities used. The key to the argument is that for any vector of random

variables ~z with vector of means ~µz and variances ~σ2z and for Euclidean utility

with bliss point ~xi, E[−(~z−~xi)′(~z−~xi)] = −[ι′~σ2z +(~µz−~xi)′(~µz−~xi)], where

ι is n′ vector of ones. Note also ∂
∂~xi

[−[ι′~σ2z +(~µz−~xi)′(~µz−~xi)]] = 2(~µz−~xi),
which is linear in ~xi.

Now fix any profile of pure stationary Markov strategies σ̂. Consider

two policies ~p0 and ~q0 generating stochastic sequence, via σ̂, of policies

~p = {~p0, ~p1, . . .} and ~q = {~q0, ~q1, . . .} respectively. Utility of player i from

voting either for ~p0 or ~q0 is

Ui(~p0|σ̂) = E

[ ∞∑
t=0

−δt(~pt − ~xi)′(~pt − ~xi)

]

Ui(~q0|σ̂) = E

[ ∞∑
t=0

−δt(~qt − ~xi)′(~qt − ~xi)

]
.

(A46)

Differentiating the difference in utility from the two policies with respect

to ~xi gives

∂[Ui(~p0|σ̂)− Ui(~q0|σ̂)]

∂~xi
= E

[
2
∞∑
t=0

−δt(~qt − ~pt)

]
(A47)

which is independent of ~xi and hence Ui(~p0|σ̂) − Ui(~q0|σ̂) is linear in ~xi.

As a consequence, for any pair of players {i, ir} for ∀i ∈ N \ {m}, which

exists by radial symmetry, there exists at least one player i′ ∈ {i, ir}, such

that Um(~p0|σ̂) ≥ Um(~q0|σ̂) implies Ui′(~p0|σ̂) ≥ Ui′(~q0|σ̂) and Um(~p0|σ̂) <

Um(~q0|σ̂) implies Ui′(~p0|σ̂) < Ui′(~q0|σ̂).

Now assume Um(~p0|σ̂) ≥ Um(~q0|σ̂). Then by the argument just made,

there is at least n−1
2 players with Ui(~p0|σ̂) ≥ Ui(~q0|σ̂) and ~p0 is accepted.

Conversely, if Um(~p0|σ̂) < Um(~q0|σ̂), then there is at least n−1
2 players with

satisfied with equality means xa = xe. Algorithm 1 produces x̂ either with x̂e = xm and
x̂−e = x−e or with x̂e = xe+2δr−e(xm−xe) and x̂−e = x−e. That σ′′ = (x−e, xm, (x̂e, xe))
constitutes SMPE then follows from similar argument to the one just presented. The only
difference is that, using e = 3, (xa, x3) interval does not exist and p3(x|x̂3, xa) = x̂3 for
∀x ∈ [x̂3, x3] and p3(x|x̂3, xa) = x3 for x > xe, that is, player 3 switches from proposing
x̂3 directly to proposing x3 at xa = x3.
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Ui(~p0|σ̂) < Ui(~q0|σ̂) and ~q0 is rejected. This implies that ~p0 is accepted if

and only if Um(~p0|σ̂) ≥ Um(~q0|σ̂), that is, when the median player (weakly)

prefers ~p0 to ~q0. �

A1.17 Proof of Lemma 8

To see part 1, for ∀~x ∈ X and ∀~y ∈ X with ||~x|| = ||~y||, we have ~pi(~x|k̂i) =

~pi(~y|k̂i) for ∀i ∈ N and any k̂i ≥ 0. Because

Vi(~x|σ) =
∑
j∈N

rj

[
ui(~pj(~x|k̂j)) + δVi(~pj(~x|k̂j)|σ)

]
(A48)

where σ is induced by k̂, Vi(~x|σ) = Vi(~y|σ) for ∀i ∈ N follows.39

For part 2, Ui(~x|σ) = ui(~x) + δVi(~x|σ) for any ~x ∈ X. Because Vi(~x|σ)

is constant on any hypersphere in X by part 1 and since (strict) maximizer

of ui(~x) on any hypersphere in X lies on i-ray when i ∈ N \ {m}, we have

Ui(k~xi|σ) > Ui(~y|σ) for any ~y ∈ X such that k||~xi|| = ||~y|| but k~xi 6= ~y.

For part 3, fix k̂ with k̂i ≥ 0 for ∀i ∈ N\{m} and k̂m = 0 and the induced

profile of strategies σ. Proving that Ui(~x|σ) = ui(~x)+δVi(~x|σ) is continuous

on X is equivalent to proving that Vi(k~xi|σ) is continuous in k on [0,∞).

From ||~pi(~x|k̂i)|| = ||~x|| for ∀~x ∈ {~x ∈ X| ||~x|| ∈ D(σ)} and ∀i ∈ NC(||~x|| |σ),

combined with part 1, we can rewrite (A48) for ∀k||~xi|| ∈ D(σ)

Vi(k~xi|σ) =

∑
j∈N rjui(~pj(k~xi|k̂j))

+δ
∑

j∈C(k||~xi|| |σ) rjVi(~pj(k~xi|k̂j)|σ)

1− δrnc(k||~xi|| |σ)
(A49)

which is continuous in k, for ∀i ∈ N , by continuity of ~pj(k~xi|k̂j) for ∀j ∈ N ,

constancy of ~pj(k~xi|k̂j) for ∀j ∈ C(k||~xi|| |σ) and by local, that is on any

interval induced by ND(σ), constancy of C(k||~xi|| |σ) and rnc(k||~xi|| |σ).

What remains is, for ∀i ∈ N , Vi(~xik
−|σ) = Vi(k~xi|σ) = Vi(~xik

+|σ) for

any k ≥ 0 such that k||~xi|| ∈ ND(σ) (the first equality not at k = 0).40 For

k = 0 we have ~pj(~xi0
+|k̂j) = ~xm for ∀j ∈ N so that Vi(~xi0

+|σ) = ui(~xm)
1−δ =

39 We can use (A48) since, when k̂i ≥ 0 for ∀i ∈ N , proposal generated by the simple
proposal strategy ~pi of any i ∈ N is always accepted, which in turn follows from the
properties of the social acceptance correspondence A proved in part 6. For now, we
conjecture that part 6 holds and then confirm it is the case.

40 Vi(~xik
−|σ) and Vi(~xik

+|σ) denote one-sided limits along i-ray approaching ||~xi||k
distance from origin from below and above respectively.
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Vi(0~xi|σ).

For k such that k||~xi|| ∈ ND(σ) \ {0}, we first notice that ~pj(~xik
−|k̂j) =

~pj(k~xi|k̂j) = ~pj(~xik
+|k̂j) for ∀j ∈ N and any k > 0 so that the first sum

in the numerator of (A49) is continuous in k. Now use, for any k > 0 such

that k||~xi|| ∈ ND(σ), i) Vi(~pj(~xik
−|k̂j)|σ) = Vi(~pj(~xik

+|k̂j)|σ) = Vi(~xik
−|σ)

for ∀j ∈ C(||~xi||k+|σ) \ C(||~xi||k−|σ) (players that switch from non-constant

to constant part of their strategy at k||~xi|| distance), ii) C(||~xi||k−|σ) ∩
C(||~xi||k+|σ) = C(||~xi||k−|σ) (players switch to proposing constant policy

at k||~xi||), iii) rnc(||~xi||k−|σ) = rnc(||~xi||k+|σ)+
∑

j∈C(||~xi||k+|σ)\C(||~xi||k−|σ) rj

and iv) Vi(~pj(~xik
−|k̂j)|σ) = Vi(~pj(k~xi|k̂j)|σ) = Vi(~pj(~xik

+|k̂j)|σ) for ∀j ∈
C(||~xi||k−|σ) ∩ C(||~xi||k+|σ) (players that propose constant policy in the

neighbourhood, below and above, of k||~xi||) to rewrite (A49), for any i ∈ N ,

Vi(~xik
+|σ) =

=

∑
j∈N rjui(~pj(~xik

+|k̂j))
+δ
∑

j∈C(||~xi||k+|σ) rjVi(~pj(~xik
+|k̂j)|σ)

1− δrnc(||~xi||k+|σ)

=

∑
j∈N rjui(~pj(~xik

−|k̂j))
+δ
∑

j∈C(||~xi||k−|σ) rjVi(~pj(~xik
−|k̂j)|σ)

+δ
∑

j∈C(||~xi||k+|σ)\C(||~xi||k−|σ) rjVi(~xik
−|σ)

1− δrnc(||~xi||k−|σ) + δ
∑

j∈C(||~xi||k+|σ)\C(||~xi||k−|σ) rj

=

Vi(~xik
−|σ)(1− δrnc(||~xi||k−|σ)

+Vi(~xik
−|σ)δ

∑
j∈C(||~xi||k+|σ)\C(||~xi||k−|σ) rj

1− δrnc(||~xi||k−|σ) + δ
∑

j∈C(||~xi||k+|σ)\C(||~xi||k−|σ) rj

= Vi(~xik
−|σ).

(A50)

To prove Vi(k~xi|σ) = Vi(~xik
−|σ), we have, from Vi(~pj(k~xi|k̂j)|σ) =

Vi(~pj(~xik
−|k̂j)|σ) for ∀j ∈ C(||~xi||k−|σ) and Vi(~pj(k~xi|k̂j)|σ) = Vi(k~xi|σ)
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for ∀j ∈ NC(||~xi||k−|σ),

Vi(k~xi|σ) =
∑
j∈N

rj

[
ui(~pj(k~xi|k̂j)) + δVi(~pj(k~xi|k̂j)|σ)

]
=
∑
j∈N

rjui(~pj(~xik
−|k̂j)) + δ

∑
j∈C(||~xi||k−|σ)

Vi(~pj(~xik
−|k̂j)|σ)

+ δrnc(||~xi||k−|σ)Vi(k~xi|σ)

= Vi(~xik
−|σ)(1− δrnc(||~xi||k−|σ))

+ δrnc(||~xi||k−|σ)Vi(k~xi|σ)

(A51)

and the claim, for any i ∈ N , follows.

To prove part 4, ∂2

∂2k
[Ui(k~xi|σ)] < 0 for k ≥ 0 such that k||~xi|| ∈ D(σ)

for ∀i ∈ N , we first show the result for ∀i ∈ N \ {m}. Note that, for any

j ∈ NC(k||~xi|| |σ),

ui(~pj(k~xi|k̂j)) = −k2||~xi||2 + 2k||~xi||2
~x ′j~xi

||~xj || · ||~xi||
− ~x ′i~xi (A52)

and hence ∂
∂kui(~pj(k~xi|k̂j)) = −2||~xi||2(k−cos(i, j)) and ∂2

∂2k
ui(~pj(k~xi|k̂j)) =

−2||~xi||2. Using (A49), along with the fact that ~pj(k~xi|k̂j) is constant in k

for ∀j ∈ C(k||~xi|| |σ) and that both C(k||~xi|| |σ) and rnc(k||~xi|| |σ) are both

locally, on any interval induced by ND(σ), constant, we have

∂Ui(k~xi|σ)

∂k
=

2||~xi||2

1− δrnc(k||~xi|| |σ)

1− k − δ
∑

j∈NC(k||~xi|| |σ)

rj [1− cos(i, j)]

 (A53)

for ∀i ∈ N \ {m}. The desired result now follows easily. For m it follows

from proof of part 5.

For part 5, we need to show that, along arbitrary z-ray, ∂
∂kUm(k~xz|σ) < 0

for k ≥ 0 such that k||~xz|| ∈ D(σ). From ∂
∂kum(~pj(k~xz|k̂j)) = −2k||~xz||2 for

any j ∈ NC(k||~xz|| |σ), we have

∂Um(k~xz|σ)

∂k
= − 2k||~xz||2

1− δrnc(k||~xz|| |σ)
(A54)

and the claim, using continuity of Um from part 3, follows. Part 6 is then

direct consequence of part 5 and of Proposition 11. �
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A1.18 Proof of Proposition 12

From definition 3 of SMPE, profile of strategies σ̂ constitutes SMPE, by

one-stage-deviation principle, if σ̂ induces Ui(σ̂) for ∀i ∈ N and A(σ̂) such

that the set of optimal proposal strategies, arising from maximization of

Ui(σ̂) on A(σ̂) for any given status-quo, includes σ̂.

Fix set of strategic bliss points k̂ from algorithm 2 and induced profile

of strategies σ. Clearly, the voting strategies subsumed in σ are optimal for

every player. Because k̂ satisfies k̂i ≥ 0 for ∀i ∈ N \ {m} and k̂m = 0, by

Lemma 8, ~pi(~x|k̂i) ∈ A(~x|σ) for ∀~x ∈ X and ∀i ∈ N . That is, proposals

with zero probability of acceptance are never made. Also, for m we have

k̂m = 0, hence proposal strategy of the median player is optimal by Lemma

8 part 5.

Now let us focus on i ∈ N \{m}. By Lemma 8 part 2, policy maximizing

dynamic utility Ui of player i, for any status-quo ~x ∈ X, lies on i-ray. Using

shape of A from Lemma 8 part 6, we need to make sure that proposing
||~x||
||~xi||~xi for any ~x ∈ X with ||~x||

||~xi|| ∈ [0, k̂i] and k̂i~xi otherwise is optimal for

i. Ui making this proposal strategy optimal has to satisfy Ui(k~xi|σ) ≤
Ui(l~xi|σ) for any k ∈ [0, k̂i] and l ∈ [0, k̂i] such that k < l and Ui(k̂i~xi|σ) ≥
Ui(k~xi|σ) for any k > k̂i. The first inequality follows from the way algorithm

2 constructs the strategic bliss points; it generates k̂ such that, denoting

derivative of Ui(k~xi|σ) with respect to k by U ′i(k~xi|σ), U ′i(~xik̂
−
i |σ) = 0 and

U ′i(~xik̂
−
j |σ) ≥ 0 for any j such that k̂j ||~xj || ∈ [0, k̂i||~xi||), which, combined

with piece-wise strict concavity of Ui, shows the claim. To ensure the second

inequality, notice that from (A53) we have U ′i(k~xi|σ) ≤ 0 for any k ≥ 1 such

that k||~xi|| ∈ D(σ), so that Ui(~xi|σ) ≥ Ui(k~xi|σ) for any k > 1. Hence we

need to make sure that Ui(k̂i~xi|σ) ≥ Ui(k~xi|σ) for any k ∈ [k̂i, 1] in order

for σ to constitute SMPE.

To prove that condition S′ is sufficient, part 1, we have U ′i(~xik̂
+
i |σ) ≤ 0.

When k̂i = 0 algorithm 2 drops i because U ′i(~xik̂
+
i |σ) ≤ 0. When k̂i > 0

algorithm 2 drops i because Ui(~xik̂
−
i |σ) = 0 and we have Ui(~xik̂

−
i |σ) =

Ui(~xik̂
+
i |σ) from (A53), the fact that exactly one player is dropped in any

step of the algorithm and from 1 − cos(i, i) = 0. Hence, by strict concav-

ity of Ui, we need to ensure that U ′i(~xik
+|σ) ≤ 0 for ∀k||~xi|| ∈ ND(σ) ∩

(k̂i||~xi||, ||~xi||) or, equivalently, ∀k ∈ NDi(σ) ∩ (k̂i, 1) = Si(σ). Using (A53)

this condition becomes 1− k − δ
∑

j∈NCi(k+|σ) rj [1− cos(i, j)] ≤ 0 (we have

used NCi(x) = NC(x||~xi||) in the expression), which is what the condition S′
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requires. Hence if S′ holds, we have Ui(k̂i~xi|σ) ≥ Ui(k~xi|σ) for any k ∈ [k̂i, 1]

and σ constitutes SMPE.

To prove that condition N′ is necessary and sufficient, part 2, we note

that Ui(k̂i~xi|σ) ≥ Ui(k~xi|σ) for any k ∈ [k̂i, 1] is equivalent to Ui(k̂i~xi|σ) ≥
Ui(k~xi|σ) for any k ∈ ((NDi(σ) ∪ Li(σ)) ∩ (k̂i, 1)) ∪ {k̂i, 1} = Ni(σ). To see

this, take two adjacent elements of NDi(σ) from [k̂i, 1], k′ and k′′, with k′ <

k′′. If Ui has no local maximum on [k′, k′′], that is when [k′, k′′]∩Li(σ) = ∅,
then Ui(k

′~xi|σ) > Ui(k
′′~xi|σ) ⇔ Ui(k

′~xi|σ) > Ui(y~xi|σ) and Ui(k
′~xi|σ) <

Ui(k
′′~xi|σ) ⇔ Ui(k

′~xi|σ) < Ui(y~xi|σ) for any y ∈ [k′, k′′] (equality cannot

happen by strict concavity of Ui). If Ui has local maximum on [k′, k′′] then

exactly one and we can set k′′′ = [k′, k′′] ∩ Li(σ) and proceed with similar

argument using k′′′ instead of k′′.

To show that Ui(k̂i~xi|σ) ≥ Ui(y~xi|σ) for any y ∈ Ni(σ) is equivalent to

N′, for any differentiable continuous function f , f(x)− f(z) = [
∫
f ′(a)da]xz .

When f is not differentiable at x, y, z with x < y < z but possesses one-sided

derivatives at x, y, z, we have f(x) − f(z) = [
∫
f ′(a)da]x

+

y− + [
∫
f ′(a)da]y

+

z− .

Now, (A53) can be rewritten as U ′i(k~xi|σ) = −2||~xi||2
1−δ

∑
j∈NCi(k|σ)

rj
[k − ci(k|σ)]

where ci(k|σ) = 1 − δ
∑

j∈NCi(k|σ) rj [1− cos(i, j)]. Hence
∫
U ′i(k~xi|σ) =

Ti(k|σ) = −2||~xi||2
1−δ

∑
j∈NCi(k|σ)

rj

[
k2

2 − ci(k|σ)k
]

as NCi(k|σ) is constant on any

interval induced by NDi(σ). Condition N′ then takes into account that

Ni(σ) can have arbitrary number of elements. When it holds, we have

Ui(k̂i~xi|σ) ≥ Ui(y~xi|σ) for any y ∈ [k̂i, 1] and σ constitutes SMPE. When

it fails, we have Ui(k̂i~xi|σ) < Ui(y~xi|σ) for some y ∈ [k̂i, 1] and σ cannot

constitute SMPE, as i would like to deviate to proposing y~xi when the

status-quo is y~xi, as opposed to proposing k̂i~xi that σ requires. �

A1.19 Proof of Proposition 13

First index players such that m = n and ir = i + n−1
2 modulo n − 1 for

∀i ∈ N \ {m} so that N = {1, 2, . . . , n−12 , 1r, 2r, . . . , n−12
r
,m}. We denote

first and second half of the non median players by H1 = {1, 2, . . . , n−12 } and

H2 = {1r, 2r, . . . , n−12
r} respectively. We claim that, within algorithm 2, we

can make choices regarding which players to drop, such that the algorithm

drops all the players from H1 in steps {1, . . . , n−12 } and all the players from

H2 in steps {n−12 + 1, . . . , n − 1}. To show that the claim is true, we will

show that when the algorithm, in generic step, still includes i, ir and j but
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not jr, then j cannot be dropped. Assume i ∈ Pt, j ∈ Pt, ir ∈ Pt and jr /∈ Pt
in step t of algorithm 2. We need to compare 1 − δ

∑
s∈Pt rs[1− cos(j, s)]

with 1 − δ
∑

s∈Pt rs[1− cos(i, s)] = 1 − δ
∑

s∈Pt rs[1− cos(ir, s)]. For j to

be dropped it has to be the case that
∑

s∈Pt cos(j, s)− cos(i, s) ≤ 0. Now

cos(j, j) = 1, cos(j, s) = 0 for ∀s ∈ Pt \ {j}, cos(i, i) = 1 = − cos(i, ir) and

cos(i, s) = 0 for ∀s ∈ Pt \ {i, ir} so that the left hand side of the inequality

is equal to unity and j cannot be dropped.

To see part 1, when δ = 0 it is obvious. When δ ∈ (0, 1), algorithm 2

gives option to drop one out of n − 1 players in step t = 1. In step t = 2,

the choice is among n − 3 players. The two players not considered are the

one dropped in the previous step, i, and ir, who can be dropped only at a

later step. The algorithm proceeds in this manner until it includes pairs of

players {j, jr}, until step t = n−1
2 . In step t = n−1

2 + 1 the algorithm gives

option to drop one out of n−1
2 players, in step t = n−1

2 + 2 one out of n−3
2

and so on, until the last step. The number of different sets of strategic bliss

points is then
∏n−1

2
i=1 (n+ 1− 2i)

∏n−1
2

i=1 (n+1−2i
2 ) = 2(n−1)/2

(
n−1
2 !
)2

.

For part 2 we need to show that any set of strategic bliss points from

algorithm 2 satisfies condition S′. Suppose the algorithm, in step t with

players in Pt still in the algorithm, has dropped player i′. Then strategic

bliss point of player i′ is k̂i′ = 1− δ
∑

j∈Pt rj [1− cos(i′, j)] and condition S′

reads 1 − k̂i′ − δ
∑

s∈NCi(k̂+i′ |σ)
rs[1− cos(s, i)] ≤ 0 for ∀i ∈ N \ {Pt ∪ m}.

Using NCi(k̂+i′ |σ) = Pt \ {i′} and 1− cos(i′, i′) = 0 the condition rewrites as∑
s∈Pt\{i′} cos(s, i)− cos(s, i′) ≤ 0 for ∀i ∈ N \ {Pt ∪m}.41

To see that the condition holds, i′ /∈ Pt \{i′} and, since i ∈ N \{Pt∪m},
i /∈ Pt\{i′}. Thus cos(s, i) ∈ {0,−1} and cos(s, i′) ∈ {0,−1} for ∀s ∈ Pt\{i′}.
Now suppose i′ ∈ H2. Then cos(s, i′) = 0 for ∀s ∈ Pt \ {i′} and condition

S′ holds. Now suppose i ∈ H1 and i′ ∈ H1. Then cos(s, i) = −1 for exactly

one s ∈ H2 ⊆ Pt \ {i′} and cos(s, i′) = −1 for exactly one s ∈ H2 ⊆ Pt \ {i′}
and condition S′ holds. Since we do not need to consider the remaining case,

i ∈ H2 and i′ ∈ H1, due to i having been dropped earlier than i′, we have

just shown that condition S′ holds, for all the previously dropped players,

when algorithm 2 drops player i′. Repeating the argument for any step of

the algorithm proves that the set of strategic bliss points it produces induces

41 This is not fully precise as we are still in step t of the algorithm so σ is not yet fully
specified. It is obvious this is purely a matter of exposition; we can finish specification of
σ and then look at i′ dropped in step t and players dropped before i′, N \ {Pt ∪m}.
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σ that constitutes SMPE.

Part 3, single-peakedness of Ui(k~xi|σ) in k on R≥0, is direct consequence

of condition S′ being satisfied for i ∈ N \ {m} and of Lemma 8 part 5. �

A1.20 Proof of Proposition 14

Recall that for equiangular G on a circle we index players such that ~x1 =

(b, 0), cos(i, 1) = cos((i − 1)α) for i ∈ {1, . . . , n − 1} where α = 2π
n−1 , ~xi

are arranged, with increasing i, counter-clockwise on a circle of radius b and

m = n. With this notation we have cos(i, j) = cos (i− j)α. Without loss

of generality we set b = 1 as G is scale invariant. Throughout the proof,

we use, without further notice, well known trigonometric identities sin−θ =

− sin θ, cos−θ = cos θ, sin 2θ = 2 sin θ cos θ, sin θ+sinϕ = 2 sin θ+ϕ
2 cos θ−ϕ2 ,

cos θ − cosϕ = −2 sin θ+ϕ
2 sin θ−ϕ

2 and Lagrange’s trigonometric identity∑n
i=1 cosnθ = −1

2 + 1
2 csc θ

2 sin (n+ 1
2)θ.

To see part 1, the claim about δ = 0 is obvious. When δ ∈ (0, 1), we

claim algorithm 2 gives choice to drop one out of n− 1 players in step 1 and

gives choice to drop one out of two players in any of the remaining, except

for the last one, steps t ∈ {2, . . . , n− 2}. This produces 2(n−3)(n− 1) sets of

strategic bliss points. The key to our claim is that, with Pt players still in

the algorithm for t ∈ {2, . . . , n − 2}, the choice regarding whom to drop is

over the pair of players {minPt,maxPt}. This, in any step t ∈ {1, . . . , n−1}
of the algorithm, creates Pt that is ‘convex’; if it includes players i and j

with i ≤ j ≤ n− 1, then it also includes all the players {i, . . . , j}.
Consider general step t of the algorithm with the set of players still

considered Pt and denote j′ = minPt and j′′ = maxPt. As we just argued,

1 ≤ j′ ≤ j′′ ≤ n− 1 and Pt = {j′, . . . , j′′}. The player to drop in step t will

be player with the smallest k̂i,t where

k̂i,t = 1− δ
n

∑
j∈{j′,...,j′′}

1− cos (i− j)α

= 1− δ
n(j′′ + 1− j′)

+ δ
n csc α

2

[
sin ((j′′ + 1− j′)α2 ) cos ((j′′ + j′ − 2i)α2 )

] (A55)

which is minimized for i = j′ or i = j′′, due to csc α
2 > 0, α

2 (j′′ + 1 − j′) ∈
[ π
n−1 , π] and α

2 (j′′ + j′ − 2i) ∈ [−π n−2n−1 , π
n−2
n−1 ].

For part 2, we need to show that any set of strategic bliss points from
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algorithm 2 satisfies condition S′. Suppose that in step t with Pt still in

the algorithm, j′ = minPt is dropped. When j′′ = maxPt the argument is

symmetric and omitted. Then the strategic bliss point of j′ is

k̂j′ = 1− δ
n

(
j′′ − j′ + 1

2

)
+ δ

2n csc α
2 sin

(
α
(
j′′ − j′ + 1

2

))
(A56)

and we need to check condition S′ for the players dropped previously, that

is for i ∈ {1, . . . , j′ − 1} ∪ {j′′ + 1, . . . , n− 1}. Condition S′ reads

1− k̂j′ − δ
n

∑
j∈NCi(k̂+j′ |σ)

1− cos(i, j) ≤ 0 (A57)

which, using NCi(k̂+j′ |σ) = {j′ + 1, . . . , j′′}, rewrites as

− 4sin
(
α
2

(
i− j′′ − 1

))
sin
(
α
2

(
i− j′

))
sin
(
α
2

(
j′′ − j′

))
≤ 0. (A58)

To see that the inequality holds, we note α
2 (j′′ − j′) ∈ [0, π n−2n−1 ], if i ∈

{1, . . . , j′−1} then α
2 (i−j′) ∈ [−π n−2n−1 ,−

π
n−1 ] and α

2 (i−j′′−1) ∈ [−π,− 2π
n−1 ]

and if i ∈ {j′′+1, . . . , n−1} then α
2 (i−j′) ∈ [ π

n−1 , π
n−2
n−1 ] and α

2 (i−j′′−1) ∈
[0, π n−3n−1 ]. We have just shown that condition S′ holds, for all the previously

dropped players, when algorithm 2 drops player j′. Repeating the argument

for any step of the algorithm proves that the set of strategic bliss points it

produces induces σ that constitutes SMPE.

Part 3, single-peakedness of Ui(k~xi|σ) in k on R≥0, is direct consequence

of condition S′ being satisfied for i ∈ N \ {m} and of Lemma 8 part 5.

For part 4, we use expression for k̂j′ from (A56). When γ
2π fraction of

players has already been dropped, we have j′′ = n − 1 and j′ = γ
2π (n − 1),

so that j′′ − j′ = (n− 1)(1− γ
2π ). Then limn→∞

δ
n(j′′ − j′ + 1

2) = δ(1− γ
2π ),

limn→∞
δ
2n csc α

2 = δ
2π and limn→∞ sinα(j′′ − j′ + 1

2) = − sin γ. Combining

these expressions we get limn→∞ k̂j′ = 1 − δ + δ
[
γ−sin γ

2π

]
. The expression

used to generate figure 3a is then limδ→1 limn→∞ k̂j′ = γ−sin γ
2π . For figure

3b, for angle, with horizontal axis, γ fraction 2γ of players has already been

dropped and 2γ−sin 2γ
2π = γ−sin γ cos γ

π . �
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