"Subjective Return Expectations, Information and Portfolio Choice" (Work in Progress)

Luc Arrondel (PSE-CNRS-BdF) Hector Calvo Pardo (UoS)

Xisco Oliver (UIB)

Economics Department, Universitat de les Illes Balears

May the 2nd, 2014

 Household Portfolios are poorly understood... [Guiso, Haliassos and Jappelli (2002); Campbell (2006)]. Facts we focus in today:

- Household Portfolios are poorly understood... [Guiso, Haliassos and Jappelli (2002); Campbell (2006)]. Facts we focus in today:
 - Age-portfolio profiles are hump-shaped at the extensive margin, with an unclear pattern at the intensive one

- Household Portfolios are poorly understood... [Guiso, Haliassos and Jappelli (2002); Campbell (2006)]. Facts we focus in today:
 - Age-portfolio profiles are hump-shaped at the extensive margin, with an unclear pattern at the intensive one
 - Mouseholds' portfolios are (i) missing (non-participation puzzle), (ii) incomplete (poorly diversified) and (iii) very heterogeneous. Consensus: information and transaction costs are the most important quantitatively [e.g. Vissing-Jorgensen (2002)].

- Household Portfolios are poorly understood... [Guiso, Haliassos and Jappelli (2002); Campbell (2006)]. Facts we focus in today:
 - Age-portfolio profiles are hump-shaped at the extensive margin, with an unclear pattern at the intensive one
 - 4 Households' portfolios are (i) missing (non-participation puzzle), (ii) incomplete (poorly diversified) and (iii) very heterogeneous. Consensus: information and transaction costs are the most important quantitatively [e.g. Vissing-Jorgensen (2002)].
- But information costs seem at odds with Rational Expectations, i.e. with agents holding a statistically correct unbiased view of future returns

- Household Portfolios are poorly understood... [Guiso, Haliassos and Jappelli (2002); Campbell (2006)]. Facts we focus in today:
 - Age-portfolio profiles are hump-shaped at the extensive margin, with an unclear pattern at the intensive one
 - 4 Households' portfolios are (i) missing (non-participation puzzle), (ii) incomplete (poorly diversified) and (iii) very heterogeneous. Consensus: information and transaction costs are the most important quantitatively [e.g. Vissing-Jorgensen (2002)].
- But information costs seem at odds with Rational Expectations, i.e. with agents holding a statistically correct unbiased view of future returns
 - "... little is known about what kind of information rational-expectations investors should learn." [Van Nieuwerburgh and Veldkamp (2010)]

- Household Portfolios are poorly understood... [Guiso, Haliassos and Jappelli (2002); Campbell (2006)]. Facts we focus in today:
 - Age-portfolio profiles are hump-shaped at the extensive margin, with an unclear pattern at the intensive one
 - 4 Households' portfolios are (i) missing (non-participation puzzle), (ii) incomplete (poorly diversified) and (iii) very heterogeneous. Consensus: information and transaction costs are the most important quantitatively [e.g. Vissing-Jorgensen (2002)].
- But information costs seem at odds with Rational Expectations, i.e. with agents holding a statistically correct unbiased view of future returns
 - "... little is known about what kind of information rational-expectations investors should learn." [Van Nieuwerburgh and Veldkamp (2010)]
- Subjective Belief Elicitation: Does what they believe in explain their financial decisions?

- Household Portfolios are poorly understood... [Guiso, Haliassos and Jappelli (2002); Campbell (2006)]. Facts we focus in today:
 - Age-portfolio profiles are hump-shaped at the extensive margin, with an unclear pattern at the intensive one
 - Mouseholds' portfolios are (i) missing (non-participation puzzle), (ii) incomplete (poorly diversified) and (iii) very heterogeneous. Consensus: information and transaction costs are the most important quantitatively [e.g. Vissing-Jorgensen (2002)].
- But information costs seem at odds with Rational Expectations, i.e. with agents holding a statistically correct unbiased view of future returns
 - "... little is known about what kind of information rational-expectations investors should learn." [Van Nieuwerburgh and Veldkamp (2010)]
- Subjective Belief Elicitation: Does what they believe in explain their financial decisions?
- (combined with) Information Elicitation: Does what they believe in explain their financial decisions, given what they know?

Behavioural literature:

- Behavioural literature:
 - Behavioural Finance: When finance models do not match the data, we adapt the model to rationalize the data by adopting non-standard preferences (loss-aversion, mental accounting...) or beliefs (overconfidence, under/over-reaction...) -Barberis and Thaler (2003)

Behavioural literature:

- Behavioural Finance: When finance models do not match the data, we adapt the model to rationalize the data by adopting non-standard preferences (loss-aversion, mental accounting...) or beliefs (overconfidence, under/over-reaction...) -Barberis and Thaler (2003)
- Financial literacy/cognitive ability and Household Finance: limited access to/ability to process/awareness of financial knowledge deters households from investing in the stock market (Christelis et al., 2010; van Rooij et al. 2011; Grinblatt et al. 2011; Lusardi et al. 2012)

- Behavioural literature:
 - Behavioural Finance: When finance models do not match the data, we adapt the model to rationalize the data by adopting non-standard preferences (loss-aversion, mental accounting...) or beliefs (overconfidence, under/over-reaction...) -Barberis and Thaler (2003)
 - Financial literacy/cognitive ability and Household Finance: limited access to/ability to process/awareness of financial knowledge deters households from investing in the stock market (Christelis et al., 2010; van Rooij et al. 2011; Grinblatt et al. 2011; Lusardi et al. 2012)
- Subjective expectations literature:

- Behavioural literature:
 - Behavioural Finance: When finance models do not match the data, we adapt the model to rationalize the data by adopting non-standard preferences (loss-aversion, mental accounting...) or beliefs (overconfidence, under/over-reaction...) -Barberis and Thaler (2003)
 - Financial literacy/cognitive ability and Household Finance: limited access to/ability to process/awareness of financial knowledge deters households from investing in the stock market (Christelis et al., 2010; van Rooij et al. 2011; Grinblatt et al. 2011; Lusardi et al. 2012)
- Subjective expectations literature:
 - Survey Expectations: Pesaran and Weale (2006)

Behavioural literature:

- Behavioural Finance: When finance models do not match the data, we adapt the model to rationalize the data by adopting non-standard preferences (loss-aversion, mental accounting...) or beliefs (overconfidence, under/over-reaction...) -Barberis and Thaler (2003)
- Financial literacy/cognitive ability and Household Finance: limited access to/ability to process/awareness of financial knowledge deters households from investing in the stock market (Christelis et al., 2010; van Rooij et al. 2011; Grinblatt et al. 2011; Lusardi et al. 2012)
- Subjective expectations literature:
 - Survey Expectations: Pesaran and Weale (2006)
 - Subjective Belief Elicitation: Dominitz (1998, 2001); Dominitz and Manski (1997); Manski (2004)

Behavioural literature:

- Behavioural Finance: When finance models do not match the data, we adapt the model to rationalize the data by adopting non-standard preferences (loss-aversion, mental accounting...) or beliefs (overconfidence, under/over-reaction...) -Barberis and Thaler (2003)
- Financial literacy/cognitive ability and Household Finance: limited access to/ability to process/awareness of financial knowledge deters households from investing in the stock market (Christelis et al., 2010; van Rooij et al. 2011; Grinblatt et al. 2011; Lusardi et al. 2012)
- Subjective expectations literature:
 - Survey Expectations: Pesaran and Weale (2006)
 - Subjective Belief Elicitation: Dominitz (1998, 2001); Dominitz and Manski (1997); Manski (2004)
 - Subjective Belief Elicitation and Household Finance: Dominitz and Manski (2007); Dominitz and Manski (2011); Hurd (2009); Hurd, van Rooij and Winter (2011), Kezdi and Willis (2009, 2011)

Why Should (Subjective) Expectations Matter? Rationality benchmark

- Why Should (Subjective) Expectations Matter? Rationality benchmark
- (Data Validation: Subjective Belief Elicitation in the TNS 2007 vs. HRS 2004 and Participation Decisions: circulated paper)

- Why Should (Subjective) Expectations Matter? Rationality benchmark
- (Data Validation: Subjective Belief Elicitation in the TNS 2007 vs. HRS 2004 and Participation Decisions: circulated paper)
- Novelty: Information Elicitation in the TNS 2007

- Why Should (Subjective) Expectations Matter? Rationality benchmark
- (Data Validation: Subjective Belief Elicitation in the TNS 2007 vs. HRS 2004 and Participation Decisions: circulated paper)
- Novelty: Information Elicitation in the TNS 2007
- Does It work? Subjective Expectations, Information and Portfolio Choice

- Why Should (Subjective) Expectations Matter? Rationality benchmark
- (Data Validation: Subjective Belief Elicitation in the TNS 2007 vs. HRS 2004 and Participation Decisions: circulated paper)
- Novelty: Information Elicitation in the TNS 2007
- Ooes It work? Subjective Expectations, Information and Portfolio Choice
- Conclusions and Extensions

Why Should (Subjective) Expectations Matter? Main Point

 Households' rationality benchmark: standard two-asset portfolio choice model (Arrow, 1965),

$$\underset{\alpha \in [0,w_0]}{\max} E\left\{u[(1+R)W_0 + (\widetilde{R}-R)\alpha]\right\}$$

Participation Condition:
$$E\widetilde{R} - R > 0$$

Conditional Demand Equation:
$$lpha^*\cong rac{E\widetilde{R}-R}{A_u(W_0)\sigma_R^2}$$

Why Should (Subjective) Expectations Matter?

 Households' rationality benchmark: standard two-asset portfolio choice model (Arrow, 1965),

$$\max_{\alpha \in [0,w_0]} E\left\{u[(1+R)W_0 + (\widetilde{R}-R)\alpha]\right\}$$

Participation Condition:
$$E\widetilde{R} - R > 0$$

Conditional Demand Equation:
$$\alpha^* \cong \frac{E\widetilde{R} - R}{A_u(W_0)\sigma_R^2}$$

• Main Point: Replace $E\{.\}$ by $E^{i}\{.\} \equiv E_{P^{i}}\{.|I^{i}\}$ everywhere above

Why Should (Subjective) Expectations Matter?

 Households' rationality benchmark: standard two-asset portfolio choice model (Arrow, 1965),

$$\underset{\alpha \in [0,w_0]}{\max} E\left\{u[(1+R)W_0 + (\widetilde{R}-R)\alpha]\right\}$$

Participation Condition:
$$E\widetilde{R} - R > 0$$

Conditional Demand Equation:
$$\alpha^* \cong \frac{E\widetilde{R} - R}{A_u(W_0)\sigma_R^2}$$

- Main Point: Replace $E\{.\}$ by $E^{i}\{.\} \equiv E_{P^{i}}\{.|I^{i}\}$ everywhere above
- N.B. Samuelson (1969) (Merton, 1969): similar conditional demand with i.i.d. normality of $ln(1+\widetilde{R})$ and CRRA preferences in a dynamic (continuous-t) infinite horizon setup $(R_u(W_0))$ replaces $A_u(W_0)$ and α^* denotes instead the share of W_0)

Main Point

What do We do (I)

TNS-2007 Survey

A professional Survey Agency (TNS) was paid (ANR research funds) to administer a survey with questions on attitudes, preferences, expectations and socio-economic and demographic characteristics to a representative sample of 4,000 households. Respondents had to fill the questionnaire, and return it by the post in exchange of around €25 (bons-d'achat).

What do We do (I)

TNS-2007 Survey

- A professional Survey Agency (TNS) was paid (ANR research funds) to administer a survey with questions on attitudes, preferences, expectations and socio-economic and demographic characteristics to a representative sample of 4,000 households. Respondents had to fill the questionnaire, and return it by the post in exchange of around €25 (bons-d'achat).
- We elicit households' subjective beliefs regarding the **likely** evolution of the French stock market index (CAC-40) 5 years ahead in time, I_{t+5} , relative to the time of the survey, I_t .

What do We do (I)

TNS-2007 Survey

- A professional Survey Agency (TNS) was paid (ANR research funds) to administer a survey with questions on attitudes, preferences, expectations and socio-economic and demographic characteristics to a representative sample of 4,000 households. Respondents had to fill the questionnaire, and return it by the post in exchange of around €25 (bons-d'achat).
- We elicit households' subjective beliefs regarding the **likely** evolution of the French stock market index (CAC-40) 5 years ahead in time, I_{t+5} , relative to the time of the survey, I_t .
- We elicit households' subjective beliefs regarding the **recent past** evolution of the French stock market index (CAC-40) over the 5 years, I_{t-5} , prior to the time of the survey, I_t .

What do We do (II): TNS 2007 Survey Time

French Stock Market Index CAC-40 between Mar1980 and Apr2012

How do We do It (I)

Probabilistic Questions about Expected Stock Market Performance 5 years ahead: (Translated) Wording

C6. 'Five years from now, do you think that the stock market... -For each category write down the likelihood of occurrence assigning a value between 0 and 100 $(p'_{t+1,k})$. The sum of all your answers must be equal to 100 $(\sum_{k} p'_{t\perp 1}|_{k} = 100)$ -: $\{k=1:R_{t+1}\in(0.25,R_{\max}^i)\}$ -... will have increased by more than 25% $\{k=2: R_{t+1} \in [0.10, 0.25]\}$ -... will have increased by 10 to 25% $\{k = 3 : R_{t+1} \in (0, 0.10)\}$ -... will have increased by less than 10% $\{k = 4 : R_{t+1} = 0\}$ -... will be the same $\{k = 5 : R_{t+1} \in (0, -0.10)\}$ -... will have decreased by less than 10% $\{k = 6 : R_{t+1} \in [-0.10, -0.25]\}$ -... will have decreased by 10 to 25% $\{k=7:R_{t+1}\in(-0.25,-R_{\mathsf{min}}^i]\}$ -... will have decreased by more than 25% C7b. 'If you expect the stock market to increase within the next 5 years, which is the highest possible increase (as a percentage)?' (R_{max}^i) C8b. 'In your opinion, if you expect the stock market to decrease within the next

5 years, which is the lowest possible decrease (as a percentage)?' (R'_{min})

How do We do It (II)

Probabilistic Questions about Expected (and Past) Stock Market Performance (over the past) 5 years ahead:

 $I_t \equiv Value \text{ of the CAC-40 Index by the time of the survey (March 2007, approx.)}$

 I_{t+5} \equiv Value of the CAC-40 Index 5 years ahead of the time of the survey (March 2012, approx.)

We are inquiring about the subjective likelihood $(p_{t+1,k}^i)$ of different ranges (k) for the index percentage change $(R_{t+1}(5) \equiv \frac{l_{t+5}}{l_t} - 1)$,

$$\forall i: p_{t+1,k}^i \equiv \operatorname{Pr}^i \left[R_{t+1} \in k \right] = \operatorname{Pr}^i \left[\frac{I_{t+5}}{I_t} - 1 \in k \right]$$

Similarly, if $I_{t-5} \equiv Value$ of the CAC-40 Index 5 years prior to the time of the survey (March 2002, approx.),

$$orall i: p_{t,k}^i \equiv \operatorname{Pr}^i \left[R_t \in k
ight] = \operatorname{Pr}^i \left[rac{I_t}{I_{t-5}} - 1 \in k
ight]$$

How do They answer (I)

Average Expected (Past) Stock Market Performance (over the past) 5 years ahead:

Histogram of average individual answers to the likelihood of the different scenarios regarding 5-year ahead stock market performance. Source: TNS 2007.

Histogram of average individual answers to the relative likelihood of the different scenarios regarding the stock market performance over the last 5 years.

Source: TNS 2007.

Pessimistic regarding the future, but on average well informed regarding the

How do They answer (II)

Descriptive Statistics: Probabilistic Questions about Stock Market Performance

Descriptive Statistics

Variable	No. Obs.	Mean	Std. Dev.	Min	Max
Expected Return (ER)	2460	0.055311	0.112602	-0.625	1.125
Std. Dev. of ER	2460	0.068028	0.07347	0	0.43056
Past ER (pER)	2231	0.11938	0.139876	-0.375	0.375
Std. Dev. of pER	2231	0.065598	0.069211	0	0.375

On average, households are relatively well informed about the last 5 years average stock market performance

How do They answer (II)

Descriptive Statistics: Probabilistic Questions about Stock Market Performance

Descriptive Statistics

Variable	No. Obs.	Mean	Std. Dev.	Min	Max
Expected Return (ER)	2460	0.055311	0.112602	-0.625	1.125
Std. Dev. of ER	2460	0.068028	0.07347	0	0.43056
Past ER (pER)	2231	0.11938	0.139876	-0.375	0.375
Std. Dev. of pER	2231	0.065598	0.069211	0	0.375

- On average, households are relatively well informed about the last 5 years average stock market performance
- They tend to be more pessimistic about the mean stock market performance 5 years ahead, and

How do They answer (II)

Descriptive Statistics: Probabilistic Questions about Stock Market Performance

Descriptive Statistics

Variable	No. Obs.	Mean	Std. Dev.	Min	Max
Expected Return (ER)	2460	0.055311	0.112602	-0.625	1.125
Std. Dev. of ER	2460	0.068028	0.07347	0	0.43056
Past ER (pER)	2231	0.11938	0.139876	-0.375	0.375
Std. Dev. of pER	2231	0.065598	0.069211	0	0.375

- On average, households are relatively well informed about the last 5 years average stock market performance
- They tend to be more pessimistic about the mean stock market performance 5 years ahead, and
- The average standard deviation for the 5 years ahead seems too low, but larger than that for the last 5 years

May the 2nd, 2014

Data validation: Differences from the HRS 2004

Probabilistic Questions about Expected and Past Stock Market Performance

- Different Horizon (5 versus 1 year ahead) intended to reduce the sensibility of answers to: (i) Bussiness cycle conditions by the time of the survey (capture better historic trend in returns), and to (ii) Inertia in portfolio management (with which horizon do households invest in equity?): Less 50-50 type of answers.
- Oifferent Elicitation Methodology: we elicit pdfs. (à la Guiso et al., 1996) as opposed to cdfs. (à la Dominitz and Manski, 2007): Less above 100 points, less 50-50 type of answers.
- Representative sample by age: [Why is it that the young do not invest] in stocks?]
- Representative sample by wealth: [Why is it that the rich do not invest in stocks?]
- We elicit individual information about past stock performance probabilistically (Stock Market Performance over the last 5 years) to capture: (i) Differences in information across households, and (ii) The relationship between information and expectations?

Stock Market Participation and Conditional Shares (TNS-2007) by Age (Gender)

Main Facts

• The age-participation portfolio profile is hump-shaped, with no clear pattern at the intensive margin

Mean Expectations and Information by Age

• The average Expected Return (ER) appears hump-shaped over the life-cycle (alike participation)

Mean Expectations and Information by Age

- The average Expected Return (ER) appears hump-shaped over the life-cycle (alike participation)
- The young appear worse informed than the elderly [King and Leape (1987), Hurd (2009)] (against financial literacy fidings)...

Mean Sd. of Expectations and Information by Age

• There is (mildly) more uncertainty regarding the future than the past,

Mean Sd. of Expectations and Information by Age

- There is (mildly) more uncertainty regarding the future than the past,
- And both follow a U-pattern with age (consistent with financial literacy)...

Mean Expectations and Information by Wealth

• The wealthier are better informed regarding the past, and more optimistic regarding the future

Mean Sd. of Expectations and Information by Wealth

• The wealthier are less uncertain about the recent past, and mildly so regarding the future

Does It work?

Expectations and Investor Behaviour

 $\widetilde{R}^i_{t+1}(5)\equiv rac{\widetilde{I}_{t+5}}{I_t}-1$ denotes household i's perception of the 5-year-ahead Stock Market return:

$$\ln \underbrace{\frac{I_{t+5}}{I_t}}_{=1+R_{t+1}(5)} = 5\mu^i + \sum_{f=1}^5 \eta^i_{t+f}$$

$$=1+R_{t+1}(5)$$

$$\eta^i_{t+f} \sim i.i.d.N(0,\sigma^2_i)$$

$$p^{*i}_{t+1,k} = \Pr(r^i_{t+1} > \ln(1+R_k) | \mu^i) = \Phi\left(\frac{5\mu^i - \ln(1+R_k)}{\sqrt{5}\sigma_i}\right)$$

$$R_k = \left\{-R^i_{\min}, -0.25, -0.1, 0, 0.1, 0.25, R^i_{\max}\right\}$$

Econometric Specification

IV Heckman

• Assumptions: (i) $u_p \sim N(0,1)$ (Probit), (ii) $E(u_s|u_p) = \eta u_p$ (Linearity),

$$\overrightarrow{\text{CRRA}} \left\{ \begin{array}{ll} \textit{Stocks} = & 1\{\beta_{p\mu}\mu_{t+1} + \beta_{p\sigma}\sigma_{t+1} + \beta_{p}'\mathbf{x} + u_{p} > 0\} \\ \frac{\textit{Stocks}}{\textit{F}} = & \beta_{s\mu}\mu_{t+1} + \beta_{s\sigma}\sigma_{t+1} + \beta_{s}'\mathbf{x}_{1} + u_{s} \\ \textit{IV} & \left\{ \begin{array}{ll} \mu_{t+1} = & \beta_{\mu}'\mathbf{x} + \delta_{\mu}'\mathbf{z} + u_{\mu} \\ \sigma_{t+1} = & \beta_{\sigma}'\mathbf{x} + \delta_{\sigma}'\mathbf{z} + u_{\sigma} \end{array} \right. \end{array} \right.$$

```
\mathbf{x}_1 = \{CARA, Temp. Pref.; Total Wealth, Income; Education, Age; Liq. Constr.\}
 \mathbf{x} = \{\mathbf{x}_1; \text{ Shares in Remuneration, Transfers, Parents' own stocks}\}
\mathbf{z} = \{ \hat{\boldsymbol{\mu}}_t, \boldsymbol{\sigma}_t ; \text{qc3} \}
```

IV Heckman (Information affects Stock Ownership ONLY through Expectations)

 Genotte's (1986, JF) Separation Theorem: [Optimal Portfolio Choice under Incomplete Information]

"Agents solve the investment decision problem in two stages: derivation of (conditional) expected returns, and choice of an optimal portfolio of assets using estimated expected returns"

IV Heckman (Information affects Stock Ownership ONLY through Expectations)

 Genotte's (1986, JF) Separation Theorem: [Optimal Portfolio Choice under Incomplete Information]

"Agents solve the investment decision problem in two stages: derivation of (conditional) expected returns, and choice of an optimal portfolio of assets using estimated expected returns"

• Exclusion restriction 1: Information (μ_t, σ_t) does not determine stockownership directly, only through expectations $(\mu_{t+1}, \sigma_{t+1})$

IV Heckman (Information affects Stock Ownership ONLY through Expectations)

 Genotte's (1986, JF) Separation Theorem: [Optimal Portfolio Choice under Incomplete Information]

"Agents solve the investment decision problem in two stages: derivation of (conditional) expected returns, and choice of an optimal portfolio of assets using estimated expected returns"

- Exclusion restriction 1: Information (μ_t, σ_t) does not determine stockownership directly, only through expectations $(\mu_{t+1}, \sigma_{t+1})$
- Exclusion restriction 2: Inertia determines stockownership, but not the proportion of financial wealth invested in stocks (conditional demands)

Table 1: The demand for risky assets

	Heck	man	Heck	Heckman		IV Heckman		
	(w/o Expectations)				(Jacknife s.e.)			
	select	alpha	select	alpha	select	alpha		
Variable	(1)	(2)	(3)	(4)	(5)	(6)		
Expected Return (ER)			1.105***	12.20				
IV-ER					2.712***	48.31**		
Std.Dev. ER			1.292***	-33.40***				
IV-Std.Dev. ER					0.783	-52.78***		
CARA	-0.0122	-0.415**	-0.00796	-0.420**	-0.00380	-0.313		
Temporal preference	0.0554***	-1.240***	0.0543***	-1.215***	0.0549***	-1.243***		
Income	20.47***	-21.17	18.78***	-28.75	15.79***	-113.2		
Income Sq.	-137.5***	233.9	-122.6**	284.1	-100.7*	1,045		
Total wealth	0.834***	1.144	0.798***	1.065	0.791***	0.955		
Total wealth Sq.	-0.0355***	-0.0352	-0.0337***	-0.0342	-0.0330	-0.0255		
Age	0.192*	4.246	0.169	4.192	0.161	4.407		
Age Sq.	-0.0126	-0.404	-0.00970	-0.412	-0.00907	-0.441		
Transfers	0.197***		0.195***		0.186***			
High school	0.428***	5.048	0.442***	5.213	0.484***	5.340		
Tech./Prof.	0.210	4.234	0.216	4.162	0.262*	4.209		
Some college (or+)	0.215	4.463	0.204	4.530	0.229	4.255		
Paris	0.0934		0.0673		0.0823			
Parents own stocks	0.433***		0.418***		0.415***			
Firm shares remuneration	0.529***		0.533***		0.531***			
Liquidity constrained	-0.727***		-0.677***		-0.695**			
N	2,636	2,636	2,636	2,636	2,636	2,636		
Chi2	3.664	3.664	2.649	2.649	1.247	1.247		
Chi2 P-value	0.0556	0.0556	0.104	0.104	0.264	0.264		
Log-likelihood	-6696	-6696	-6668	-6668	-6670	-6670		

Note: The reference category for education is "less than High School". "" p<0.01, " p<0.05, " p<0.1. TNS 2007.

Quantitatively important

- A 10 pp. increase in μ_{t+1} (from 5.3% to 15.3%; N.B. over a 5-year horizon, is approx. an average increase of 2% per year):
 - Increases the ownership rate by 11 pp. $(\frac{.52-.41}{.41}=26.8\%)$ and,
 - 2 Increases the share invested in risky assets by 4.8 pp. ($\frac{.314-.266}{.266} = 18.1\%$).
- A 10pp. increase in σ_{t+1} :
 - 1 Does not determine stock ownership, and
 - ② Reduces the share invested in risky assets by 5.3 pp. $(\frac{.213-.266}{.266}=-19.9\%)$
- The effects are conditional on demographic, (time and risk)
 preference, income and wealth controls, as well as on
 inertial/informational factors; and conform with elementary portfolio
 choice theory predictions (Arrow, 1965; Merton, 1969; Samuelson,
 1969)

Instrumentation results

Which instruments work? Individual information on past returns (μ_t, σ_t) , "being unconstrained" (qc3)

$$\mathbf{z}_{\mu} = \left\{ \begin{matrix} \boldsymbol{\mu}_t, \boldsymbol{\sigma}_t; \text{qc3} \\ \scriptscriptstyle{(+)} \quad \scriptscriptstyle{(0)} \quad \scriptscriptstyle{(+)} \end{matrix} \right\}; \mathbf{z}_{\sigma} = \left\{ \begin{matrix} \boldsymbol{\sigma}_t \\ \scriptscriptstyle{(+)} \end{matrix} \right\}$$

Endogeneity: t-test (and F-test of the joint significance of \hat{u}_{σ} and) \hat{u}_{u} in the Heckman specification:

$$\underbrace{\begin{array}{l}t = -2.36\\(P-value=0.018)\end{array}}_{\text{Participation }(\mu)};\;\underbrace{\chi^2_2(2,039) = 6.75}_{\text{Conditional Demand }(\mu,\sigma)}\Longrightarrow \text{Exogeneity}$$

Test of Overidentifying Restrictions $(nR^2 \sim \chi_q^2 : q = No.$ Instruments-No.Endogenous Var.):

$$n\overline{R}^2=1.425088\sim\chi_1^2(919), P-value=0.233\Longrightarrow {\sf Valid\ Instruments}$$

What Determines Information

Determinants of information variables (see Appendix 3)

What determines the information proxies?

- μ_t determined by gender, education, age, income, 'being unconstrained' (qc3), CARA;
- \circ σ_t explained by qi3 (self-confidence), qi28a_5 (friends' advice), qi29_6 (frequency and access to financial media)

Table 2: The demand for risky assets; by Wealth (below/above median)

Table 21 The demand for the	IV Hed		IV Heckman		IV Heckman		
	(Jacknife s.e.)		Median Wealth+		Median Wealth-		
	select	alpha	select	alpha	select	alpha	
Variables	(1)	(2)	(5)	(6)	(9)	(10)	
IV-ER	2.833***	49.57**	3.267***	55.75**	2.255**	35.55	
IV-Std.Dev. ER	0.569	-49.33***	0.491	-25.06	0.729	-89.46***	
CARA	-0.00449	-0.306	-0.00686	-0.216	-0.000377	-0.565	
Temporal preference	0.0579***	-1.258***	0.0716***	-0.873	0.0386**	-1.589***	
Income	15.15***	-107.2	7.501	-34.68	16.86*	-257.9	
Income Sq.	-95.83*	992.8	-42.64	535.9	30.64	1,205	
Total wealth	0.794***	0.996	0.518***	0.459	4.228	-73.36***	
Total wealth Sq.	-0.0332	-0.0256	-0.0204**		-9.165		
Age	0.192*	4.351	0.511***	4.694	-0.157	8.893**	
Age Sq.	-0.0105	-0.447	-0.0395**	-0.421	0.0215	-0.984**	
Transfers	0.183***		0.201***		0.140*		
High school	0.498***	5.355	0.576**	7.920	0.412*	0.232	
Tech./Prof.	0.271**	4.275	0.316	5.000	0.190	2.231	
Some college (or+)	0.225	4.443	0.268	6.341	0.158	-0.922	
Paris	0.0750		0.0250		0.152		
Parents own stocks	0.408***		0.367***		0.455***		
Firm shares in remuneration	0.535***		0.567***		0.516***		
If children>0	-0.0499		-0.214**		0.0357		
Liquidity Constrained	-0.701**		-0.335		-0.894**		
Trust	0.169***	-1.146	0.153*	-1.995	0.165*	0.566	
N	2,636	2,636	1,318	1,318	1,318	1,318	
Chi2	1.229	1.229	0.0577	0.0577	4.385	4.385	
Chi2 P-value	0.268	0.268	0.810	0.810	0.0363	0.0363	
Log-likelihood	-6671	-6671	-4047	-4047	-2597	-2597	

Note: *** p<0.01, ** p<0.05, * p<0.1. The reference category for education is "less than High School". TNS 2007.

Table 3: The demand for risky assets; Robustness

	IV Heckman (Jacknife s.e.)		IV Heckman Non-traders only		IV Heckman Financial Advisor		IV Heckman Self-Management	
	select	alpha	select	alpha	select	alpha	select	alpha
Variable	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
IV-ER	2.712***	48.31**	-0.0914	17.23	2.526*	-11.36	3.933***	87.75***
IV-Std.Dev. ER	0.783	-52.78***	0.763	-44.56*	0.754	-39.83	-0.182	-30.08
CARA	-0.00380	-0.313	-0.00443	0.0597	0.0106	-0.580*	-0.0103	-0.188
Temporal preference	0.0549***	-1.243***	0.0463***	-0.578	0.0552**	-1.107**	0.0520**	-1.578**
Income	15.79***	-113.2	19.10**	-214.4	16.89**	87.08	18.15*	-69.90
Income Sq.	-100.7*	1,045	-276.9*	2,073	-88.03	-172.7	-150.0	623.2
Total wealth	0.791***	0.955	1.513***	-8.264	0.565**	-2.551	0.933	5.993
Total wealth Sq.	-0.0330	-0.0255	-0.583**	7.705	-0.0282	0.223	-0.0384	-0.228
Age	0.161	4.407	0.121	6.967*	0.309	5.246	0.255	2.808
Age Sq.	-0.00907	-0.441	-0.00784	-0.681*	-0.0211	-0.693	-0.0199	-0.0905
Transfers	0.186***		0.189***		0.176**		0.100	
High school	0.484***	5.340	0.512**	0.174	0.323	7.569	0.384	0.0120
Tech./Prof.	0.262*	4.209	0.262	3.794	0.0854	-3.334	0.0824	5.702
Some college (or+)	0.229	4.255	0.264	3.074	0.164	-0.694	0.0105	2.137
Paris	0.0823		0.0443		0.170		-0.147	
Parents own stocks	0.415***		0.229***		0.434***		0.463***	
Firm shares remuneration	0.531***		0.579***		0.547**		0.711***	
If children>0	-0.0340		0.0407		0.103		-0.0705	
Liquidity constrained	-0.695**		-0.506*		-0.270		-0.683	
N	2,636	2,636	1,860	1,860	811	811	1,257	1,257
Chi2	1.247	1.247	2.764	2.764	1.165	1.165	0.00472	0.00472
Chi2 P-value	0.264	0.264	0.0964	0.0964	0.280	0.280	0.945	0.945
Log-likelihood	-6670	-6670	-3012	-3012	-2608	-2608	-3223	-3223

Note: The reference category for education is "less than High School". *** p<0.01, ** p<0.05, * p<0.1. TNS 2007.

By Total Wealth and Robustness

• Table 2, columns (5)-(6): conditional subjective expectations can explain why not all of the wealthiest invest in stocks (as opposed to low transaction costs)

By Total Wealth and Robustness

- Table 2, columns (5)-(6): conditional subjective expectations can explain why not all of the wealthiest invest in stocks (as opposed to low transaction costs)
- Table 3: Columns (7)-(8): Who has not traded over the last year? 1,860 households, likely to be inertial traders. Hence their portfolio choices should not be determined by their subjective conditional expectations. OK

By Total Wealth and Robustness

- Table 2, columns (5)-(6): conditional subjective expectations can explain why not all of the wealthiest invest in stocks (as opposed to low transaction costs)
- Table 3: Columns (7)-(8): Who has **not** traded over the last year? 1,860 households, likely to be inertial traders. Hence their portfolio choices should **not** be determined by their subjective conditional expectations. OK
- Who manages the portfolio?

By Total Wealth and Robustness

- Table 2, columns (5)-(6): conditional subjective expectations can explain why not all of the wealthiest invest in stocks (as opposed to low transaction costs)
- Table 3: Columns (7)-(8): Who has not traded over the last year? 1,860 households, likely to be inertial traders. Hence their portfolio choices should **not** be determined by their subjective conditional expectations. OK
- Who manages the portfolio?
 - Oclumns (9)-(10): for 811 households, a financial advisor (totally or partially). Their portfolio choices should not be determined by their subjective conditional expectations. OK

Results (III) By Total Wealth and Robustness

- Table 2, columns (5)-(6): conditional subjective expectations can explain why not all of the wealthiest invest in stocks (as opposed to low transaction costs)
- Table 3: Columns (7)-(8): Who has not traded over the last year? 1,860 households, likely to be inertial traders. Hence their portfolio choices should **not** be determined by their subjective conditional expectations. OK
- Who manages the portfolio?
 - Oclumns (9)-(10): for 811 households, a financial advisor (totally or partially). Their portfolio choices should **not** be determined by their subjective conditional expectations. OK
 - Oclumns (11)-(12): for 1,257 households, themselves (individually or with their spouse). Their portfolio choices are determined by their subjective conditional expectations, more strongly. OK

Results (III) By Total Wealth and Robustness

- Table 2, columns (5)-(6): conditional subjective expectations can explain why not all of the wealthiest invest in stocks (as opposed to low transaction costs)
- Table 3: Columns (7)-(8): Who has not traded over the last year? 1,860 households, likely to be inertial traders. Hence their portfolio choices should **not** be determined by their subjective conditional expectations. OK
- Who manages the portfolio?
 - Columns (9)-(10): for 811 households, a financial advisor (totally or partially). Their portfolio choices should not be determined by their subjective conditional expectations. OK
 - Columns (11)-(12): for 1,257 households, themselves (individually or with their spouse). Their portfolio choices are determined by their subjective conditional expectations, more strongly. OK
- Non-stockholders, although worse informed, also become better informed as they age. OK

Mean Information by Age and Stockownership

 Non-stockholders, although worse informed, also become better informed as they age

Elicited subjective stock market expectations:

 Determine age-portfolio profiles at both margins (confirming elementary theory), conditional on information:

- Determine age-portfolio profiles at both margins (confirming elementary theory), conditional on information:
 - The young do not invest *because they are not aware* about the existence of an equity premium... (Hurd, 2009)

- Determine age-portfolio profiles at both margins (confirming elementary theory), conditional on information:
 - The young do not invest because they are not aware about the existence of an equity premium... (Hurd, 2009)
 - Relevant information is collected slowly through individual's life-time (King and Leape, 1987; Lusardi, Michaud and Mitchell, 2012)

- Determine age-portfolio profiles at both margins (confirming elementary theory), conditional on information:
 - The young do not invest because they are not aware about the existence of an equity premium... (Hurd, 2009)
 - Relevant information is collected slowly through individual's life-time (King and Leape, 1987; Lusardi, Michaud and Mitchell, 2012)
- Are empirically heterogenous, time-varying, and correlated with information

- Determine age-portfolio profiles at both margins (confirming elementary theory), conditional on information:
 - The young do not invest because they are not aware about the existence of an equity premium... (Hurd, 2009)
 - Relevant information is collected slowly through individual's life-time (King and Leape, 1987; Lusardi, Michaud and Mitchell, 2012)
- Are empirically heterogenous, time-varying, and correlated with information
- Can quantitatively explain the portfolio non-participation puzzle:

- Determine age-portfolio profiles at both margins (confirming) elementary theory), conditional on information:
 - The young do not invest because they are not aware about the existence of an equity premium... (Hurd, 2009)
 - Relevant information is collected slowly through individual's life-time (King and Leape, 1987; Lusardi, Michaud and Mitchell, 2012)
- Are empirically heterogenous, time-varying, and correlated with information
- Can quantitatively explain the portfolio non-participation puzzle:
 - No Reverse causality: we measure information/optmism at the individual level.

- Determine age-portfolio profiles at both margins (confirming) elementary theory), conditional on information:
 - The young do not invest because they are not aware about the existence of an equity premium... (Hurd, 2009)
 - Relevant information is collected slowly through individual's life-time (King and Leape, 1987; Lusardi, Michaud and Mitchell. 2012)
- Are empirically heterogenous, time-varying, and correlated with information
- Can quantitatively explain the portfolio non-participation puzzle:
 - No Reverse causality: we measure information/optmism at the individual level.
 - Consistent with not all the wealthiest investing.

- Determine age-portfolio profiles at both margins (confirming) elementary theory), conditional on information:
 - The young do not invest because they are not aware about the existence of an equity premium... (Hurd, 2009)
 - Relevant information is collected slowly through individual's life-time (King and Leape, 1987; Lusardi, Michaud and Mitchell. 2012)
- Are empirically heterogenous, time-varying, and correlated with information
- Can quantitatively explain the portfolio non-participation puzzle:
 - No Reverse causality: we measure information/optmism at the individual level.
 - Consistent with not all the wealthiest investing,
 - ... but *Inertia*: no panel dimension available...

- Determine age-portfolio profiles at both margins (confirming) elementary theory), conditional on information:
 - The young do not invest because they are not aware about the existence of an equity premium... (Hurd, 2009)
 - Relevant information is collected slowly through individual's life-time (King and Leape, 1987; Lusardi, Michaud and Mitchell, 2012)
- Are empirically heterogenous, time-varying, and correlated with information
- Can quantitatively explain the portfolio non-participation puzzle:
 - No Reverse causality: we measure information/optmism at the individual level.
 - Consistent with not all the wealthiest investing.
 - ... but *Inertia*: no panel dimension available...
- Quantitatively determine conditional asset demands (beyond Hurd et al.,2011; Kézdi and Willis, 2011), confirming elementary theory.

• Stiglitz (2011), Akerlof and Shiller (2009),... [best-sellers: Soros (2008), Taleb (2008)]

- Stiglitz (2011), Akerlof and Shiller (2009),... [best-sellers: Soros (2008), Taleb (2008)]
 - Beyond rational expectations: fine, but which expectations? Manski (2004): Measure them

- Stiglitz (2011), Akerlof and Shiller (2009),... [best-sellers: Soros (2008), Taleb (2008)]
 - Beyond rational expectations: fine, but which expectations? Manski (2004): Measure them
 - Define an equilibrium beyond rational expectations: fine, but how do expectations change? We need an expectations formation rule... (empirics: but read Woodford 2013 AR)

- Stiglitz (2011), Akerlof and Shiller (2009),... [best-sellers: Soros (2008), Taleb (2008)]
 - Beyond rational expectations: fine, but which expectations? Manski (2004): Measure them
 - Define an equilibrium beyond rational expectations: fine, but how do expectations change? We need an expectations formation rule... (empirics: but read Woodford 2013 AR)
 - Main building block: incomplete information in (household) finance (Genotte, 1986; Merton, 1987; Rogers, 2001; Feldman, 2007)

Research Agenda (I)

- Stiglitz (2011), Akerlof and Shiller (2009),... [best-sellers: Soros (2008), Taleb (2008)]
 - Beyond rational expectations: fine, but which expectations? Manski (2004): Measure them
 - Define an equilibrium beyond rational expectations: fine, but how do expectations change? We need an expectations formation rule... (empirics: but read Woodford 2013 AR)
 - Main building block: incomplete information in (household) finance (Genotte, 1986; Merton, 1987; Rogers, 2001; Feldman, 2007)
 - Perform a quantitative macro exercise alike Fuster et al. (NBER Macro 2012) but using subjective expectations (Arrondel, Calvo and Koulovatianos, 2013)

Research Agenda (I)

- Stiglitz (2011), Akerlof and Shiller (2009),... [best-sellers: Soros (2008), Taleb (2008)]
 - Beyond rational expectations: fine, but which expectations? Manski (2004): Measure them
 - Define an equilibrium beyond rational expectations: fine, but how do expectations change? We need an expectations formation rule... (empirics: but read Woodford 2013 AR)
 - Main building block: incomplete information in (household) finance (Genotte, 1986; Merton, 1987; Rogers, 2001; Feldman, 2007)
 - Perform a quantitative macro exercise alike Fuster et al. (NBER Macro 2012) but using subjective expectations (Arrondel, Calvo and Koulovatianos, 2013)
- Recover (risk) preferences from data on expectations and actions, adopting the CRRA-Lognormal framework

Research Agenda (I)

- Stiglitz (2011), Akerlof and Shiller (2009),... [best-sellers: Soros (2008), Taleb (2008)]
 - Beyond rational expectations: fine, but which expectations? Manski (2004): Measure them
 - Define an equilibrium beyond rational expectations: fine, but how do expectations change? We need an expectations formation rule... (empirics: but read Woodford 2013 AR)
 - Main building block: incomplete information in (household) finance (Genotte, 1986; Merton, 1987; Rogers, 2001; Feldman, 2007)
 - Perform a quantitative macro exercise alike Fuster et al. (NBER Macro 2012) but using subjective expectations (Arrondel, Calvo and Koulovatianos, 2013)
- Recover (risk) preferences from data on expectations and actions, adopting the CRRA-Lognormal framework
 - [So far the median coefficient of relative risk aversion is around 80... for 561 observations!

• Design, collect and exploit **field survey longitudinal data** to empirically assess expectational coordination [Guesnerie (1992, 2005), Evans and Honkapohja (2001)] in financial markets. Steps:

- Design, collect and exploit field survey longitudinal data to empirically assess expectational coordination [Guesnerie (1992, 2005), Evans and Honkapohja (2001)] in financial markets. Steps:
 - Are (un)conditional subjective return expectations heterogeneous? [Yes: e.g. (Dominitz and Manski, 2007)] Why?

- Design, collect and exploit field survey longitudinal data to empirically assess expectational coordination [Guesnerie (1992, 2005), Evans and Honkapohja (2001)] in financial markets. Steps:
 - Are (un)conditional subjective return expectations heterogeneous? [Yes: e.g. (Dominitz and Manski, 2007)] Why?
 - Heterogeneity in learning from publicly available information [e.g. Dominitz and Manski (2011)]

- Design, collect and exploit field survey longitudinal data to empirically assess expectational coordination [Guesnerie (1992, 2005), Evans and Honkapohja (2001)] in financial markets. Steps:
 - Are (un)conditional subjective return expectations heterogeneous? [Yes: e.g. (Dominitz and Manski, 2007)] Why?
 - Heterogeneity in learning from publicly available information [e.g. Dominitz and Manski (2011)]
 - Weterogeneity in individual information sets, despite information being publicly available [Veldkamp (2011), this paper]

- Design, collect and exploit field survey longitudinal data to empirically assess expectational coordination [Guesnerie (1992, 2005), Evans and Honkapohja (2001)] in financial markets. Steps:
 - Are (un)conditional subjective return expectations heterogeneous? [Yes: e.g. (Dominitz and Manski, 2007)] Why?
 - Heterogeneity in learning from publicly available information [e.g. Dominitz and Manski (2011)]
 - Weterogeneity in individual information sets, despite information being publicly available [Veldkamp (2011), this paper]
 - We have a description of the business cycle? [(Kézdi and Willis, 2012), Arrondel et al. (2013)].

- Design, collect and exploit field survey longitudinal data to empirically assess expectational coordination [Guesnerie (1992, 2005), Evans and Honkapohja (2001)] in financial markets. Steps:
 - Are (un)conditional subjective return expectations heterogeneous? [Yes: e.g. (Dominitz and Manski, 2007)] Why?
 - Heterogeneity in learning from publicly available information [e.g. Dominitz and Manski (2011)]
 - Weterogeneity in individual information sets, despite information being publicly available [Veldkamp (2011), this paper]
 - 4 How are (un)conditional subjective return expectations formed and revised through the business cycle? [(Kézdi and Willis, 2012), Arrondel et al. (2013)].
 - Is there a "strategic component" in subjective return expectations? i.e. When is it rational to know what others know? [e.g. Hellwig and Veldkamp (2009)]

- Design, collect and exploit field survey longitudinal data to empirically assess expectational coordination [Guesnerie (1992, 2005), Evans and Honkapohja (2001)] in financial markets. Steps:
 - Are (un)conditional subjective return expectations heterogeneous? [Yes: e.g. (Dominitz and Manski, 2007)] Why?
 - Heterogeneity in learning from publicly available information [e.g. Dominitz and Manski (2011)]
 - 4 Heterogeneity in individual information sets, despite information being publicly available [Veldkamp (2011), this paper]
 - 4 How are (un)conditional subjective return expectations formed and revised through the business cycle? [(Kézdi and Willis, 2012), Arrondel et al. (2013)].
 - 1 Is there a "strategic component" in subjective return expectations? i.e. When is it rational to know what others know? [e.g. Hellwig and Veldkamp (2009)]
 - Open Does it aggregate up? i.e. Is the sum of individual behaviours in financial markets consistent with strategic substitutes/complements? [e.g. Allen, Morris and Shin (2006)]

French Stock Market Index CAC-40 between Mar1980 and Apr2012 t = (TNS-2011 Survey time) CAC-40 = 3154 (15/11/2011)

Appendix 1: (Adaptive Learning) Rational Expectations

Density of nominal yearly (and 5-year rolling) log returns on the CAC-40 computed from monthly data between July 1987 and July 2011:

Panel (a): 1-year log-returns.

Panel (b): 5-year log-returns.

Figure: Histogram of CAC-40 index log-returns, computed at 1-year (panel a) and 5-year (panel b) rolling window frequencies. Source: Author's own calculations using monthly data between July 1987 and July 2011, available online from MSN Money.

• Moments for (1-year) 5-year log returns ($\mu=0.023$) $\mu(5)=0.108$ and ($\sigma=0.10$) $\sigma(5)=0.19$.

Appendix 2: Measured Absolute Risk Aversion

Guiso and Paiella (2008, JEEA)

Wording: 'If someone suggests that you invest in a security (S_i) promising one chance out of two to earn 5000 euros and one chance out of two of losing the capital invested, how much (as a maximum) are you willing to invest?'.

$$u^{i}(w_{i}) = \frac{1}{2}u^{i}(w_{i} + 5,000) + \frac{1}{2}u^{i}(w_{i} - Z_{i}) = Eu^{i}(w_{i} + \widetilde{S}_{i})$$

$$A_{i}(w_{i}) = 2\frac{5000 - Z_{i}}{5000^{2} + Z_{i}^{2}}$$

 A_i is the absolute risk aversion coefficient (CARA)

 Z_i is the amount that the individual declares to be willing to invest.

Risk-averse: $Z_i < 5000$, risk-neutral: $Z_i = 5000$, risk-lovers: $Z_i > 5000$.

Range: [0, 40]; Histogram very skewed to the left.

For those who answered it (If CARA>0: 3,343 respondents), mean = 39.11

Table 0: TNS 2007 Descriptive Statistics

Variable	Whole sample		Selected sample	
	Mean	Sd	Mean	Sd
Stockownership (qc14>0)	0.2888	0.4533	0.4181	0.4933
% in shares (if qc14>0)	26.57	25.15	26.63	25.16
Expected Return (ER)	0.05531	0.1126	0.0591	0.1089
(IV) ER	0.0474	0.04134	0.05313	0.04401
Sd. ER	0.06803	0.07347	0.06971	0.07278
(IV) Sd. ER	0.06487	0.03442	0.06719	0.0372
If ER>0	0.643	0.4792	0.7735	0.4186
CARA	34.17	13.42	37.44	8.503
If CARA>0	0.8738	0.3322	0.9594	0.1974
Temporal Preference	6.607	2.514	6.741	2.335
Income (in mill. EUR)	0.01752	0.01205	0.01931	0.01275
Total Wealth (in mill. EUR)	0.1989	0.53	0.2285	0.608
Age	48.28	16.82	46.89	15.95
Intergenerational transfers	0.472	0.5988	0.4928	0.6076
Education				
Less than high school	8.1%		5.0%	
High school	6.7%		5.3%	
Technical/Professional	62.2%		62.7%	
Some college or more	23.0%		27.1%	
Paris	0.1691	0.3749	0.1821	0.386
Parents own stocks	0.2603	0.4389	0.3092	0.4622
Firm shares in remuneration	0.04731	0.2123	0.0569	0.2317
If children>0	0.747	0.4348	0.7344	0.4417
Liquidity constrained	0.02248	0.1483	0.01593	0.1252
Trust	5.629	2.543	5.573	2.446
Financial advisor (yes)	0.241	0.4277	0.3077	0.4616
N	3826		2636	