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Abstract

This paper studies theoretically and experimentally the properties of plurality and

approval voting when a majority gets divided by information imperfections. The major-

ity faces two challenges: aggregating information to select the best majority candidate

and coordinating to defeat the minority candidate. Under plurality, the majority can-

not achieve both goals at once. Under approval voting, it can: welfare is strictly higher

because some voters approve of both majority alternatives. In the laboratory, we find

(i) strong evidence of strategic voting under both voting rules, and (ii) superiority of

approval voting over plurality. Finally, subject behavior suggests the need to study

equilibria in asymmetric strategies.
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1 Introduction

Elections are typically expected to achieve better-informed decisions than what an individ-

ual could achieve alone.1 The rationale is that if each voter can convey her privately-held

information through her ballot, voting results will reveal the aggregate information dis-

persed in the electorate. However, this is a big “if”: in plurality elections, for instance,

rational voters are typically expected to coordinate their ballots on only two alternatives,

independently of the number of competing alternatives (Duverger’s Law). Therefore, unless

the number of candidates is exactly two, information aggregation is dubious.

This limitation resonates with centuries of scholarly research on how to design an elec-

toral system that can aggregate heterogeneous preferences and information in an efficacious

way (see e.g. Condorcet 1785, Borda 1781, Myerson and Weber 1993, Myerson 1999, Piketty

2000, Bouton 2012). Frustration with plurality is also apparent in civil society: a large num-

ber of activists lobby in favor of reforming the electoral system2 and many official proposals

have been introduced.3 One of the most popular alternatives to plurality is approval voting

(AV).4 Yet a major hurdle stands in the way of reform: the substantial lack of knowledge

surrounding the capacity of AV (or other systems) to outperform plurality. We need a

better understanding of the properties of new electoral systems to identify and implement

meaningful reforms.

With this purpose in mind, we study the properties of plurality and AV when voters

are strategic but imperfectly informed. We focus on the case in which a majority both

needs to aggregate information and to coordinate ballots to defeat a minority alternative:

the Condorcet loser. Our analysis features two main novelties: first, we study these systems

both theoretically and experimentally. Second, instead of focusing on the limiting properties

of these systems when the electorate is arbitrarily large, we study them for any electorate

size. This means that our conclusions are equally valid for committees and general elections.

A first theoretical finding is that, in plurality, the need to aggregate information pro-

1See a.o. Condorcet 1785, Austen-Smith and Banks 1996, Feddersen and Pesendorfer 1996, 1997, My-
erson 1998, Krishna and Morgan 2012, and the references therein. For limitations, see e.g. Bhattacharya
2012, Mandler 2012, and Morgan and Várdy 2012.

2See e.g. the Electoral Reform Society (www.electoral-reform.org.uk) and the Fair Vote Reforms initia-
tive (www.fairvote.org).

3Two examples are North Dakota in 1987, where a bill to enact approval voting in some statewide
elections passed the Senate but not the House and, more recently, the U.K., which held a national referendum
in 2011 on whether to replace plurality voting with alternative voting.

4Under approval voting, voters can “approve of” as many candidates as they want. Each approval counts
as one vote and the candidate that obtains the largest number of votes wins (Weber 1977, 1995, Brams and
Fishburn 1978, 1983, Laslier 2010, Nuñez 2010, Bouton and Castanheira 2012).
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duces an equilibrium in which voters vote informatively (that is, their ballot conveys their

private information), despite the need to coordinate against the minority. This equilibrium

is not “knife edge”, and may rationalize the oft-observed pattern that strictly more than two

candidates receive positive but different vote shares, despite the predictions of Duverger’s

Law. When the minority is small, this equilibrium supports information aggregation, in the

sense that the alternative with the largest expected vote share is the full information Con-

dorcet winner. In contrast, when the minority is large, the alternative with the largest vote

share is the Condorcet loser, in which case this equilibrium is highly inefficient. This equi-

librium exists even when majority voters would benefit from collectively deviating towards

a Duverger’s Law equilibrium.

In the same setup, we show that AV can always produce strictly higher welfare than

plurality. Having the opportunity to approve of multiple alternatives allows the electorate to

achieve both better coordination and information aggregation. While we cannot establish

a general proof fully characterizing the equilibrium in approval voting,5 we are able to

formulate two substantiated conjectures: (i) the symmetric equilibrium is unique, and (ii)

the equilibrium strategy is such that voters approve of the candidate they deem best and

sometimes also approve of the other majority candidate. These conjectures find support in

one formal result and many numerical simulations.

Our theoretical analysis poses an interesting trade-off between these two electoral sys-

tems. On the one hand, one could claim that AV is more complex than plurality because it

extends the set of actions that each voter can take.6 Hence, there is a risk that actual voters

make more mistakes under AV, which could wash out its favorable theoretical properties.

On the other hand, our theoretical findings are that AV reduces the number of equilibria

and therefore simplifies strategic interactions amongst voters. In other words, AV should

facilitate the voters’ two-pronged goal of aggregating information and coordinating ballots

to avoid a victory of the Condorcet loser.

We ran controlled laboratory experiments to assess the validity of these theoretical
5 In contrast, Bouton and Castanheira (2012) fully characterize the equilibrium for arbitrarily large

electorate sizes. In the presence of “doubt”, the equilibrium proves to be unique and implies full information
and coordination equivalence. That is, the full information Condorcet winner always has the largest expected
vote share. In contrast, Goertz and Maniquet (2011) provide an example in which aggregate information
does not obtain if sufficiently many voters assign a probability zero to some states of nature.

6With three alternatives, plurality offers four possible actions: abstain, and vote for either one of the
three alternatives. AV adds another four possible actions: three double approvals, and approving of all
alternatives. Saari and Newenhizen (1988) argue that this may produce indeterminate outcomes, and Niemi
(1984) argues that AV “begs voters to behave strategically”, in a highly elaborate manner. In contrast,
Brams and Fishburn (1983, p28) show that the number of undominated strategies can be smaller under AV
than under plurality.
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findings. They reveal interesting patterns and support most predictions. We first study

setups in which information is symmetric across states of nature. Under plurality, we

observe the emergence of both types of equilibria: when the minority is sufficiently small,

all groups stick to playing the informative equilibrium. By contrast, when the minority is

“large”, in the sense that the informative equilibrium leads to the Condorcet loser winning

with a high probability, all groups gave up aggregating information and coordinated their

ballots on a same alternative, as predicted by Duverger’s Law. Under AV, some subjects

double vote to increase the vote shares of both majority candidates. As predicted, the

amount of double voting increases with the size of the minority. However, the absolute level

of double voting is lower than predicted.

Comparing the two systems, we observe that subjects make fewer strategic mistakes

under AV than under plurality. Moreover, when the minority is large, subjects need more

time to reach equilibrium play in plurality than in AV. This suggests that voters handle

more easily the larger set of voting possibilities offered by AV than the need to select an

equilibrium under plurality.

Next, and in contrast with theory (which focuses on symmetric equilibria), individual

behavior in AV displays substantial heterogeneity among subjects: many subjects always

double vote, whereas many other subjects always single vote their signal. The observation

that double-voting increases with the size of the minority is mainly driven by a switch

in the relative number of subjects in each cluster. This pattern points to the need to

extend the theory and consider equilibria in asymmetric strategies.7 Extending the model

in this direction, we find that this type of behavior is indeed an equilibrium which performs

particularly well in explaining the level of double-voting observed in the laboratory.

We then turn to those treatments in which the quality of information varies across states,

and find that subjects adjust their behavior in line with theoretical predictions. In the case

of plurality, the data provides further evidence that three-candidate equilibria are a natural

focal point when majority voters have common values. In the case of AV, the results are

even stronger, in the sense that voters converge faster to the theoretical prediction.

Last, we analyze the welfare properties of both electoral systems. A valuable feature of

a common value setup is that it allows us to make clear welfare predictions: in equilibrium,

the majority voters’ payoff should be strictly higher with AV than with plurality. This

is exactly what we observe in all different treatments. Actually, information aggregation

7 In two-candidate elections, Ladha et al. (1996) have identified situations in which there exists an
asymmetric equilibrium in which voters who receive the same signal behave differently.
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becomes so efficient with AV that realized payoffs become very close to what a social planner

who observes all signals could achieve.

Beyond testing the very predictions of the model, these experiments also shed new

light on voter rationality: determining whether voters behave strategically and respond to

incentives is a central issue in the quest for better political institutions.8 The advantage

of our setup is two pronged. First, the need to aggregate information produces different

—often opposite— voting incentives from the need to coordinate ballots. Therefore, we can

test whether and in which proportion subjects react to a change in incentives when we

modify the relative value of coordination versus information aggregation. Second, studying

multicandidate rather than two-candidate elections widens the set of electoral systems (and

thus of voter incentives) that can be analyzed. In our case, the predicted behavior of

voters is substantially different between plurality and AV. To the best of our knowledge,

our paper is the first laboratory experiment which explores multi-alternative elections with

common value voters.9 As should be clear from the above description of the results, it offers

overwhelming support to voters behaving strategically in this context.

2 A common value model

We consider a voting game with an electorate of fixed and finite size who must elect one

policy P out of three possible alternatives, A, B and C. The electorate is split in two groups:

n active voters who constitute a majority, and nC voters who constitute a minority. There

are two states of nature: ω = {a, b}, which materialize with probabilities q (ω) > 0. While

these probabilities are common knowledge, the actual state of nature is not observable

before the election.

Active voters’ utility depends both on the policy outcome and on the state of nature:

utility is high (U = V ) if A is elected and the state is a, or if B is elected and the state is

b. It is intermediate (U = v ∈ (0, V )) if A wins and the state is b or if B wins and the state

8For evidence of strategic behavior in experimental settings with information aggregation, see Guar-
naschelli, McKelvey and Palfrey (2000), Battaglini et al. (2008, 2012), Goeree and Yariv (2010), and
Bhattacharya, Duffy and Kim (2012).

9Surprisingly, the experimental literature on multicandidate elections with private value voters is also
quite slim. The seminal papers of Forsythe et al (1993, 1996) are closest to our paper. See also Rietz (2008)
or Palfrey (2012) for detailed reviews of that literature. Van der Straeten et al. (2010) also study AV
experimentally although in substantially different settings.
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is a. Finally, utility is low (normalized to zero) if C is elected:

U (P |ω) = V if (P, ω) = (A, a) or (B, b)

= v if (P, ω) = (A, b) or (B, a) (1)

= 0 if P = C.

For the sake of simplicity, minority voters are passive in the game: they always vote

for C. Hence, C receives nC ballots independently of the state of nature and the electoral

system. Active voters must cast at least nC ballots in favor of either A or B to avoid the

victory of C. We focus on the interesting case in which C-voters represent a large minority:

n− 1 > nC > n/2. Thus, C is a Condorcet loser (it would lose both against A and B in a

one-on-one contest), but it can win the election if active voters split their votes between A

and B.

Timing. Before the election (at time 0), nature chooses whether the state is a or b.
At time 1, each voter receives a signal s ∈ S ≡ {sA, sB} , with conditional probabilities
r (s|ω) > 0 and r (sA|ω) + r (sB|ω) = 1. Probabilities are common knowledge but signals

are private. Signal sA is more likely in state a than in state b:

r (sA|a) > r (sA|b) , and therefore r (sB|a) < r (sB|b) .

The distribution of signals is unbiased if r (sA|a) = r (sB|b). Note that r (sA|a)+r (sA|b) = 1
in this case. The distribution of signals is biased if r (sA|a) 6= r (sB|b) and, by convention,
we will focus on the case in which the “more abundant” signal is sA: r (sA|a)+r (sA|b) > 1.

Having received her signal, the voter updates her beliefs about each state through Bayes’

rule: q (ω|s) = q(ω) r(s|ω)
q(a) r(s|a)+q(b) r(s|b) . Like Bouton and Castanheira (2012), we assume that

signals are sufficiently strong to create a divided majority :

q (a|sA) > 1/2 > q (a|sB) . (2)

That is, conditional on receiving signal sA, alternative A yields strictly higher expected

utility than alternative B, and conversely for a voter who receives signal sB.

The election is held at time 2, when the actual state of nature is still unobserved, and
payoffs realize at time 3: the winner of the election and the actual state of nature are
revealed, and each voter receives utility U (P, ω).
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Strategy space and equilibrium concept. The alternative winning the election is the
one receiving the largest number of votes, with ties being broken by a fair dice. Still, the

action space, i.e. which ballots are feasible, depends on the electoral rule. We consider two

such rules: plurality and approval voting.

In plurality, each voter can vote for one alternative or abstain. The action set is then:

ΨPlu = {A,B,C,∅} ,

where, by an abuse of notation, action A (respectively B, C) denotes a ballot in favor of A

(resp. B, C) and ∅ denotes abstention.10

In approval voting, each voter can approve of as many alternatives as she wishes:

ΨAV = {A,B,C,AB,AC,BC,ABC,∅} ,

where, by an abuse of notation, action A denotes a ballot in favor of A only, action BC

denotes a joint approval of B and C, etc. Each approval counts as one vote: when a voter

only approves of A, then only alternative A is credited with a vote. If the voter approves

of both A and B, then A and B are credited with one vote each, and so on. As in plurality,

the alternative with the most votes wins the election.

The only difference between AV and plurality is that a voter can also cast a double

or triple approval. Double approvals (ψ = AB, BC and AC) can only be pivotal against

one precise alternative. For instance, if the voter plays AC, her ballot can only be pivotal

against B, either in favor of A or of C. A triple approval (ABC) can never be pivotal: it is

strategically equivalent to abstention.

Let xψ denote the number of voters who played action ψ ∈ ΨR, R ∈ {PLU,AV } at time
2. The total number of votes received by an alternative ψ is denoted by Xψ. Under plurality

the total number of votes received by alternative A, for instance, is simply: XA = xA.

Under AV, it is: XA = xA + xAB + xAC + xABC .

A symmetric strategy is a mapping σ : S → 4 (ΨR). We denote by σs (ψ) the probability

that some randomly sampled voter who received signal s plays ψ. Given a strategy σ, the

expected share of active voters playing action ψ in state ω is thus:

τωψ (σ) =
X

s
σs (ψ)× r (s|ω) . (3)

10Abstention will turn out to be a dominated action in both rules. Hence, removing abstention from the
choice set would not affect the analysis.
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The expected number of ballots ψ is: E [x (ψ) |ω, σ] = τωψ (σ)× n.

Let an action profile x be the vector that lists, for each action ψ, the realized number of

ballots ψ. Since we are focusing on symmetric strategies for the time being, and since the

conditional probabilities of receiving a signal s are iid, the probability distribution over the

possible action profiles is given by the multinomial probability distribution.

For this voting game, we analyze the properties of Bayesian Nash equilibria that (1) are

in weakly undominated strategies and (2) satisfy what we call sincere stability. That is,

the equilibrium must be robust to the case in which voters may tremble by voting sincerely

(that is: σsA (A) , σsB (B) ≥ ε > 0. We look for sequences of equilibria with ε→ 0).

Some equilibrium refinement is necessary to get rid of equilibria that would only be

sustainable when all pivot probabilities are exactly zero, and voters are then indifferent

between all actions. Imagine for instance that all active voters play A. In that case, the

number of votes for A is n and the number of votes for C is nC , with probability 1.

Voters are then indifferent between all possible actions, since a ballot can never be pivotal.

Sincere stability, by imposing that a small fraction of the voters votes for their preferred

alternative, implies that at least some pivot probabilities become strictly positive, and hence

that indifference is broken.

The advantage of our sincere stability refinement is twofold: it captures the essence of

properness in a very tractable way,11 and it is behaviorally relevant. Indeed, experimental

data (both in our experiments and others) suggest that some voters vote for their ex ante

most preferred alternative no matter what.

3 Plurality

This section analyzes the equilibrium properties of plurality voting. We find that two types

of equilibria coexist: in one, all active voters play the same (pure) strategy independently

of their signal: they all vote either for A or for B. This type of equilibrium is known

as a Duverger’s Law equilibrium, in which only two alternatives receive a strictly positive

vote share. In the second type of equilibrium, an active voter’s strategy does depend on

her signal. Depending on parameter values, this equilibrium either features sincere voting,

that is voters with signal sA (resp. sB) vote A (resp. B) or a strictly mixed strategy in

11We do not use more traditional refinement concepts such as perfection or properness because, in the
voting context, the former does not have much bite since weakly dominated strategies are typically excluded
from the equilibrium analysis. The latter is quite untractable since it requires a sophisticated comparison of
pivot probabilities for totally mixed strategies.
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which voters with the most abundant signal (sA by convention) mix between A and B.

Importantly, these three-party equilibria exist for any population size, are robust to signal

biases, and do not feature any tie.

3.1 Pivot Probabilities and Payoffs

When deciding for which alternative to vote, a voter must first assess the expected value of

each possible action, which depends on pivot events: unless the ballot affects the outcome

of the election, it leaves the voter’s utility unchanged. We denote by pivQP the pivot event

that one voter’s ballot changes the outcome from a victory of P towards a victory of Q.

In our setup, the comparison between the three potentially relevant actions, A, B and

C, is simplified by two elements: first, voting for C is a dominated action. Hence, we can

set τωC (σ) equal to zero. Second, a vote for A or for B can only be pivotal against C, since

we impose that nC > n/2. This implies that abstention is also a dominated action, and

simplifies the other computations without affecting generality.

A ballot, say in favour of A can only be pivotal if the number of other A-ballots (xA) is

either the same as or one less than the number of C-ballots (nC). To assess the probability

of such an event, each active voter must identify the distribution of the other n− 1 votes,
given the strategy σ. Dropping σ from the notation for the sake or readability, the pivot

probabilities in favour of A and B are:

pωAC ≡ Pr (pivAC |ω,Plurality) =
(n− 1)!
2

(τωA)
nC−1(τωB)

n−nC−1

(nC−1)!(n−nC−1)!

∙
τωA
nC

+
τωB

n− nC

¸
, (4)

pωBC ≡ Pr (pivBC |ω,Plurality) =
(n− 1)!
2

(τωB)
nC−1(τωA)

n−nC−1

(nC−1)!(n−nC−1)!

∙
τωB
nC

+
τωA

n− nC

¸
, (5)

where the two terms between brackets represent the cases in which one vote respectively

breaks and makes a tie. Note that pivot probabilities are continuous in τωA and τωB.

Let G (ψ|s) denote the expected gain of an action ψ ∈ {A,B} over abstention, ∅:

G (A|s) = q (a|s) paAC V + q (b|s) pbAC v (> 0), (6)

G (B|s) = q (a|s) paBC v + q (b|s) pbBC V (> 0). (7)

Since both actions yield higher payoffs than abstention, the latter is dominated. The pay-off
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difference between actions A and B is:

G (A|s)−G (B|s) = q (a|s) [V paAC − vpaBC ] + q (b|s) [vpbAC − V pbBC ]. (8)

3.2 Duverger’s Law Equilibria

The game theoretic version of Duverger’s Law (Duverger 1963, Riker 1982, Palfrey 1989,

Myerson and Weber 1993, Cox 1997) states that, when voters play strategically, only two

alternatives should obtain a strictly positive fraction of the votes in plurality elections. In

our setup, these equilibria are such that:

Definition 1 A Duverger’s Law equilibrium is a voting equilibrium in which only two al-

ternatives obtain a strictly positive fraction of the votes. Majority voters thus concentrate

all their ballots either on A or on B.

These Duverger’s Law equilibria feature pros and cons. On the one hand, they ensure

that C cannot win the election. On the other hand, they prevent information aggregation.

That is, the winner of the election is fully determined by voter coordination, and cannot

vary with the state of nature. Our first proposition is that:

Proposition 1 In plurality, Duverger’s Law equilibria exist for any electorate size, prior
probabilities of the two states, and distribution of signals.

Proof. Consider e.g. σsA (A) = ε and σsB (B) = 1. From (4) and (5) , we have:

pωAC
pωBC

=

µ
τωA
τωB

¶2nC−n τωA (n− nC) + τωBnC
τωAnC + τωB (n− nC)

→
ε→0

0.

Hence, from (8), we have that G (A|s)−G (B|s) < 0 for any ε in the neighborhood of 0.

The reason why Duverger’s Law equilibria exist in plurality elections is the classical

one: voters do not want to waste their ballot on an alternative that is very unlikely to win.

Consider for instance the strategy profile σ (B|sA) = 1− ε and σ (B|sB) = 1 with ε strictly

positive but arbitrarily small. In that case, an A-ballot is much less likely to be pivotal

against C than a B-ballot.12 Therefore, the value of a B-ballot is larger than that of an

A-ballot, both for sA- and sB-voters.
12For σ (B|sA) = 1 = σ (B|sB) , all pivot probabilities are equal to zero. In this case, voters are indifferent

between all actions. Sincere stability means that we identify incentives for σ (B|sA) → 1. They imply that
G (B|sA) > G (A|sA) in the neighborhood of this Duverger’s Law equilibrium.
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3.3 Informative Equilibria

In Duverger’s Law equilibria, the information dispersed among active voters is therefore lost.

Still, this type of equilibrium is typically considered as the only reasonable one if voters

are short-term instrumentally rational, in Cox’s (1997) terminology. Indeed, in a private

value setup, equilibria with more than two alternatives obtaining votes are typically “knife

edge” and “expectationally unstable” (Palfrey 1989 and Fey 1997).13 Therefore, empirical

research associates strategic voting with the voters’ propensity to abandon their preferred

but non-viable candidates, and vote for more serious contenders (see Blais and Nadeau

1996, Cox 1997, Alvarez and Nagler 2000, Blais et al 2005). Observing that only relatively

low fractions of the electorate switch to their second-best alternative in this way is then

interpreted as evidence that few voters are instrumental or rational.

Yet, as shown by Propositions 2 and 3 below, common values among majority voters

gives rise to other equilibria in which “short-term instrumentally rational voters” should

actually deviate from either Duverger’s Law equilibria or “knife-edge” three-candidate equi-

libria. The key difference is that, in our setup, voters value the information generated by

their own and by other voters’ ballots. Like in Austen-Smith and Banks (1996) and Myerson

(1998), they compare pivot probabilities across states of nature. In what we call an infor-

mative equilibrium, these pivot probabilities are sufficiently close to one another and (i) all

alternatives receive a strictly positive vote share, (ii) these vote shares are different across

alternatives (no knife-edge equilibrium), and (iii) A is the strongest majority contender in

state a, and B in state b.14

When information is close to being symmetric across states, voters vote sincerely in an

informative equilibrium: a voter who receives signal sA votes for A, whereas a voter who

receives signal sB votes for B. That is, abandoning one’s preferred candidate would not be

a best response when one expects other voters to vote sincerely:

Proposition 2 In the unbiased case r (sA|a) = r (sB|b) , the sincere voting equilibrium
exists ∀n, nc. Moreover, there exists a value δ (n, nc) > 0 such that sincere voting is an

equilibrium for any asymmetric distribution satisfying r (sA|a)− r (sB|b) < δ (n, nc) .

Proof. We start with the unbiased case, i.e. r (sA|a) = r (sB|b) . Under sincere voting, σsA (A) =
13An exception is Dewan and Myatt (2007) and Myatt (2007) who emphasize the existence of three-

candidate equilibria when there is aggregate uncertainty.
14 If, in addition, the expected vote shares of A and of B in their respective state is sufficiently larger

than C’s, then the informative equilibrium is also expectationally stable in the sense of Fey (1997). See also
Bouton and Castanheira (2009, Propositions 7.3 and 7.4).
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1 = σsB (B), (4) and (5) imply p
a
AC = pbBC > pbAC = paBC . Then, from (8):

G (A|s)−G (B|s) = [V paAC − vpaBC ] [q (a|s)− q (b|s)] .

Since q (a|sA)−q (b|sA) > 0 > q (a|sB)−q (b|sB) , this implies G (A|sA)−G (B|sA) > 0 > G (A|sB)−
G (B|sB) . Sincere voting is thus an equilibrium strategy. By the continuity of pivot probabilities

with respect to τωA and τωB , it immediately follows that there must exist a value δ (n, nC) > 0 such

that sincere voting is an equilibrium for any |r (sA|a)− r (sB|b)| < δ (n, nc).

The intuition for the proof is simply that, in the unbiased case, sincere voting implies

that the likelihood of being pivotal against C is the same with an A-ballot in state a as

with a B-ballot in state b. Therefore, sA-voters strictly prefer to vote for A and sB-voters

strictly prefer to vote for B. The pros and cons of sincere voting are the exact flipside of

the ones identified for Duverger’s Law equilibria: as illustrated by the following example, it

allows for learning, but does not guarantee a defeat of the Condorcet loser.

Example 1 Consider a case in which n = 12, nC = 7, and r (sA|a) = r (sB|b) = 2/3.15

Then, sincere voting implies that the best alternative (A in state a; B in state b) has the

highest expected vote share and wins with a probability of 73%. C has the second largest

expected vote share and wins with a probability of 23% in either state. The alternative with

the lowest —but strictly positive— vote share is B in state a and A in state b.

When nC is 9, the alternative with the largest expected vote share is C, who then wins with

a probability above 71%, whereas the best alternative wins with a probability below 29%.

Based on Proposition 2 and Example 1, one may be misled into thinking that informative

equilibria require that signals are close to being unbiased.16 Yet, the fact that the signal

structure becomes too biased to sustain sincere voting does not imply that voters switch to

a Duverger’s Law equilibrium: Proposition 3 instead shows that an informative equilibrium

still exists. In that equilibrium, sA-voters adopt a mixed strategy and vote for B with strictly

positive probability. This allows them to lean against the bias in the signal structure:

15Each numerical example reproduces the parameters used in one of the treatments of our laboratory
experiments (see Section 5). In all examples, the two states of nature are equally likely, and the payoffs are:
V = 200; v = 110 and the value of C is 20. Normalizing the latter to 0 would also reduce the other payoffs
by 20.

16Note that, for a given bias r (sA|a) − r (sB |b) > 0, sincere voting is only an equilibrium if electorate
size is sufficiently small: as electorate size increases to infinity, given the biased signal structure, the ratio
of pivot probabilities would either converge to zero or infinity if voters kept voting sincerely.
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Proposition 3 Let r (sA|a)− r (sB|b) > δ (n, nc). Then, there exists a mixed strategy equi-

librium with σsA (A) ∈ (0, 1) and σsB (B) = 1, such that alternative A receives strictly more
votes in state a than in state b, and conversely for alternative B.

Proof. See Appendix A2.

The intuition for this result is that strong biases in the signal structure imply that the

difference in pivot probabilities between states a and b becomes too large if voters keep

voting sincerely. To compensate for this bias, sA-voters must lend some support to B. The

proof shows that one such strictly mixed strategy must be an equilibrium. It is such that

sA-voters are indifferent between voting A and B, whereas sB-voters strictly prefer the

latter. The intuition for the proof of this result is best conveyed with a second example:

Example 2 Electorate size is n = 12 and nC = 7, and the signal structure is r (sA|a) =
8/9 > 2/3 = r (sB|b). For these parameter values, an sA-voter would strictly prefer to vote

for B if all the other voters were to vote sincerely. Indeed, sincere voting implies:17

( ≡ V pbBC − vpbAC
V paAC − vpaBC

= 13.6 >
8

3
=

q (a|sA)
q (b|sA)

. (9)

That is, the probability of being pivotal in favour of B in state b is much larger than any other

pivot probability, which implies G (A|sA)−G (B|sA) < 0. The mixed-strategy equilibrium is

reached when σsA (A) = 0.915 and σsB (B) = 1: by reducing the expected vote share of A

and increasing that of B, the relative probability of being pivotal in favour of A in state a

increases to the point in which ( = 8/3.

As a consequence, sA-voters are now indifferent between voting A and B, whereas sB-voters

still strictly prefer to vote B. Importantly, all vote shares are strictly positive and the

full information Condorcet winner is the most likely winner in both states of nature (their

winning probabilities are respectively 96% and 79% in states a and b):

τaA = 0.81 > τ bB = 0.69 >
nC
n
= 0.58 > τ bA = 0.31 > τaB = 0.19.

This informative equilibrium gives C a strictly positive probability of victory (18% in state

b and 3% in state a) but expected utility is higher in this equilibrium than in a Duverger’s

Law equilibrium.

The example illustrates that neither the existence nor the stability of this equilibrium
17Note that, by (8), G (A|s)−G (B|s) > 0 iff the LHS of (9) is smaller than the RHS.
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relies on some form of symmetry between vote shares. Also, as proved by Bouton and

Castanheira (2009), this mixed-strategy equilibrium also exists in large electorates, with the

difference that the gap between τaA and τ
b
B decreases to zero (i.e. limn→∞ τaA = limn→∞ τ bB),

and that stability relies on r (sA|a) being sufficiently larger than nC/n.

4 Approval Voting

4.1 Payoffs and Dominated Strategies

Under AV, voters have access to a larger choice set, which makes their choice potentially

more complex. Single approvals (A, B, C) have exactly the same effect as in plurality.

Double or triple approvals instead ensure that one selectively abstains between the approved

alternatives. For instance, an AB-ballot can only be pivotal against C. The following lemma

shows that the set of undominated strategies is more restricted:

Lemma 1 Independently of a voter’s signal, the actions ψ ∈ {C,AC,BC,ABC,∅} are
weakly dominated by some action in ψ ∈ {A,B,AB}. Hence, in equilibrium:

σs (A) + σs (B) + σs (AB) = 1, ∀s ∈ {sA, sB} . (10)

Proof. Straightforward.

The intuition for the lemma is that abstaining or approving of C can only increase C’s

probability of winning. In contrast, the actions in the undominated set (A,B, and AB) can

only reduce it. The remaining question is how a voter may want to allocate her ballot across

these undominated actions. This depends on the probability of each pivot event. Let πωQP
denote the probability that a single-Q ballot is pivotal in favor of Q at the expense of P in

state ω ∈ {a, b} and the voting rule is AV. The derivation of these pivot probabilities are
detailed in Appendix A1.

The expected value GAV of a single-A ballot under AV is then:

GAV (A|s) = q (a|s) [πaACV + πaAB (V − v)] + q (b|s) [πbACv + πbAB (v − V )]. (11)

Note that the probability of being pivotal between A and B is no longer zero, since double

voting can increase the score of both A and B above that of C. Similarly, the value of a

14



single-B ballot is:

GAV (B|s) = q (a|s) [πaBCv + πaBA (v − V )] + q (b|s) [πbBCV + πbBA (V − v)]. (12)

The value of a double ballot follows almost immediately from (11) and (12). Double

voting cannot be pivotal between A and B, while adding up the chances of being pivotal

against C, either in favor of A or in favor of B:

GAV (AB|s) = q (a|s) [πaACV + πaBCv − φa] + q (b|s) [πbACv + πbBCV − φb], (13)

where φa and φb are correcting terms for three-way ties (see Appendix A1 for a precise

definition). These correcting terms become vanishingly small and can be omitted when the

population size increases towards infinity. Yet, our purpose in this paper is to assess the

properties of plurality and AV both for small-committee and for large-population elections,

which implies that we need to take them into account.18

From (11) and (13) , the payoff differential between actions A and AB is:

GAV (A|s)−GAV (AB|s) = q (a|s) [πaAB (V − v)− πaBCv + φa] (14)

+q (b|s)
h
πbAB (v − V )− πbBCV + φb

i
.

With straightforward, although tedious, manipulations, one finds that the first term in (14)

may either be positive or negative, whereas the second is strictly negative. Similarly, the

first term in (15) is strictly negative:

GAV (B|s)−GAV (AB|s) = q (a|s) [πaBA (v − V )− πaACV + φa] (15)

+q (b|s)
h
πbBA (V − v)− πbACv + φb

i
.

4.2 Equilibrium Analysis

The action set under AV is an extension of the action set under plurality. Therefore, in a

common value setting as ours, there is always an equilibrium in AV for which welfare is

(weakly) higher than for any equilibrium in plurality (Ahn and Oliveros 2011, Proposition

1).19 Furthermore, our setup imposes that the size of the minority is large. As we observed

18These correcting terms actually prove extremely relevant for the characterization of the asymmetric
equilibria that we analyze in Section 6.3.1.

19Ahn and Oliveros (2011) exploit McLennan (1998) to show that, in a common value setup as ours,
one can rank equilibrium outcomes under approval voting as opposed to plurality and negative voting. By
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in Section 3, this implies that the probability of being pivotal between A and B is zero

under plurality. Theorem 1 directly follows from that fact and from (14− 15):

Theorem 1 There always exists a sincerely stable equilibrium in AV for which expected

welfare is strictly higher than for any equilibrium in plurality. In that equilibrium, some

voters must double vote, and σsA (A) , σsB (B) > 0.

Proof. See Appendix A3.

The intuition for this result is as follows: when one compares the set of undominated

actions in plurality and in AV, one sees that the only relevant difference is the possibility to

double vote AB. When no “other” voter double votes (which is the case under any equilib-

rium strategy in plurality) any voter must realize that she can never be pivotal between A

and B. In this case, she strictly prefers to double vote, to maximize her probability of being

pivotal against C (GAV (P |s) − GAV (AB|s) < 0, ∀P ∈ {A,B}).20 Moreover, since voters
have common value preferences, if such a deviation is beneficial for one voter, it must also

increase the other voters’ expected utility. Two corollaries follow from Theorem 1:

Corollary 1 The strategies that are an equilibrium in plurality cannot be an equilibrium in

AV. In particular, Duverger’s Law equilibria do not exist under AV.

Double voting has pros and cons in terms of the election outcome. On the one hand,

it reduces the risk that C wins the election. On the other hand, a voter who double votes

does not reveal her signal. Yet, there can never be so much double voting that information

aggregation is impossible:

Corollary 2 Pure double voting is never an equilibrium in AV.

The reason is straightforward: if all the other voters double vote, then voter i knows

(a) that her vote cannot be pivotal against C and (b) that she is as likely to be pivotal in

state a as in state b. Hence, her preferred reaction is to single vote her signal.

Pure double voting has been termed the Burr dilemma by Nagel (2007), who argues

that approval voting is inherently biased towards such ties. He documents this with the

revealed preferences, since the action set in the two other rules is a strict subset of the action set under AV,
“the maximal equilibrium utility under approval voting is greater than or equal to the maximal equilibrium
utility under plurality voting or under negative voting.” (p. 3).

20This is due to the fact that we focus on large minorities. If the size of the minority, nC , falls towards
zero, then the propensity to double vote may well drop to zero as well (see Bouton and Castanheira, 2012).

16



“[approval] experiment [that] ended disastrously in 1800 with the infamous Electoral College

tie between Jefferson and Burr”. Lemma 2 shows why such a “disaster” cannot be an

equilibrium when voting behavior is not dictated by party discipline.

Together, Corollaries 1 and 2 show that a voter’s best response is to double vote if the

other voters single vote “excessively” and to single vote sincerely if the other voters double

vote “excessively”. In a large Poisson game setup, Bouton and Castanheira (2012) shows

that this pattern is monotonic, and that the relative value of the double and single votes

cross only once. In other words, AV displays a unique equilibrium. In contrast, we do not

focus on arbitrarily large electorates. This implies that one can no longer establish a general

proof of equilibrium uniqueness. Yet, our next theorem pinpoints unique voting patterns

for any interior equilibrium:

Theorem 2 Whenever both sA- and sB-voters adopt a nondegenerate mixed strategy, then
it must be that voters with signal sA only mix between A and AB, and voters with signal

sB only mix between B and AB.

Proof. See Appendix A3.

This theorem builds on the comparison between the preferences of sA and sB voters:

conjecture for instance a case in which the former play B with strictly positive probabilities.

Since a voter with signal sB values B even more, it must only play B, which contradicts the

very nature of an interior equilibrium. To extend this result to equilibria in which (one of

the two groups of) voters play pure strategies, we would have to focus on larger electorates,

which is not the purpose of our analysis. Yet, we can rely on numerical simulations. For

all the parametric values we checked, the equilibrium was unique and such that voters with

signal sA never play B (i.e. they mix between A and AB), and voters with signal sB never

play A. This held both for interior equilibria and for equilibria in which (one of the two

groups of) voters play a degenerate strategy.

Two additional examples are useful to better understand the features and comparative

statics of voting equilibria in AV:

Example 3 Consider the same set of parameters as in Example 1: n = 12, nC = 7 or 9,
and r (sA|a) = r (sB|b) = 2/3. As just emphasized, the equilibrium is unique under AV.21

21 In the strategy space (σsA (A) , σsB (B)), there is a unique cutoff for which G (A|sA) = G (AB|sA),
and the same holds for G (B|sB) = G (AB|sB). The equilibrium lies at the intersection between these two
reaction functions.
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It is such that:

σsA (A) = σsB (B) = 0.64 and σsA (AB) = σsB (AB) = 0.36 when nC = 7,

σsA (A) = σsB (B) = 0.30 and σsA (AB) = σsB (AB) = 0.70 when nC = 9.

When nC = 7, these equilibrium profiles imply that A wins with a probability of 82% in state

a (as does B in state b), whereas C’s probability of winning is below 1% . When nC = 9,

A wins with a probability of 73% in state a (as does B in state b), whereas C’s probability

of winning remains as low as 1.5%. These values should be contrasted with the sincere

voting equilibrium in plurality (see example 1), in which the probability of selecting the best

outcome was substantially lower, and the risk that C wins was substantially larger.

Comparing equilibrium behavior with nC = 7 and nC = 9 in Example 3 shows that the

larger nC , the more double voting in equilibrium. This pattern was found to be monotonic

and consistent across numerical examples for any value of n and signal structures.

Example 4 Consider the same set of parameters as in Example 3, except for r (sA|a) =
8/9. This reproduces the biased signal setup of Example 2. Like in the previous example, the

equilibrium is unique. It yields: σsA (A) = 0.26 < σsB (B) = 0.52 and σsA (AB) = 0.74 >

σsB (AB) = 0.48. This equilibrium profile implies that A wins with a probability of 87% in

state a, whereas B wins with a probability of 90% in state b. C’s winning probabilities are

0.5% in state a and 2.8% in state b.

The equilibrium with biased information has the property that the voters with the most

abundant signal single vote less than the voters with the least abundant signal. The rationale

for this result might be obvious to the readers knowledgeable about the Condorcet Jury

Theorem: if sA- and sB-voters were to single vote with the same probability, A’s winning

probabilities would be disproportionately higher than B’s. Moreover, the pivot probabilities

between A and B would be lower in state a than in state b, which should induce all voters

to put more value on being pivotal in favour of B.

5 Experimental Design and Procedures

To test our theoretical predictions we ran controlled laboratory experiments. Subjects were

introduced to a game that had the very same structure as the one presented in the model

of Section 2. All participants were given the role of an active voter, whereas passive voters
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were simulated by the computer.22 Following the experimental literature on the Condorcet

Jury Theorem initiated by Guarnaschelli et al (2000), the two states of the world were

called blue jar and red jar, whereas the signals were called blue ball and red ball. The red

jar contained six red balls and three blue balls. Depending on the treatment, the blue jar

contained either six blue and three red balls (unbiased signals) or eight blue and one red

ball (biased signals). One of the jars was selected randomly by the computer, with equal

probability. The subjects were not told which jar had been selected, but were told how the

probability of receiving a ball of each color depended on the selected jar. After seeing their

ball, each subject could vote from a set of three candidates: blue, red or gray.23 Blue and

red were the two majority candidates and gray was the Condorcet loser. Subjects were told

that the computer casts nC votes for gray in each election (nC varied across treatments).

The subjects’ payoff depended on the color of the selected jar and that of the election

winner. If the color of the winner matched that of the jar, the payoff to all members of the

group was 200 euro cents. If the winner was blue and the jar red or the other way around,

their payoff was 110 cents. Finally, if gray won, their payoff was 20 cents.

We consider three treatment variables, which leads to six different treatments. The first

variable is the voting mechanism: in PL treatments, the voting mechanism was plurality.

In this case, subjects could vote for only one of the three candidates. In AV treatments, the

voting mechanism was approval voting. In this case, subjects could vote for any number of

candidates.24 With either mechanism, the candidate with the most votes wins, and ties were

broken with equal probability. The second variable is the size of the minority, nC , which was

set to either 7 or 9. We will refer to them as small and large minority. The third variable is

whether the signal structure is unbiased or biased. In unbiased treatments, signal precision

was identical across states and set to r (blue ball | blue jar) = r (red ball | red jar) = 2/3.

In biased treatments (which we indicate by B), r (blue ball | blue jar) was increased to 8/9.
Table 1 provides an overview of the different treatments.

Experiments were conducted at the BonnEconLab of the University of Bonn between

July 2011 and January 2012. We ran a total of 18 sessions with 24 subjects each. No subject

22Morton and Tyran (2012) show that preferences in one group are not affected by the preferences of an
opposite group. Therefore, having computerized rather than human subjects should not alter the behavior
of majority voters in a significant way. Having partisans (the equivalent to our passive voters) simulated by
the computer has been used in previous studies — see Battaglini et al. (2008, 2010).

23The colors that we used in the experiments were blau, rot and schwarz. Throughout the paper, however,
we refer to blue, red and gray respectively.

24As in Guarnaschelli et al. (2000), abstention was not allowed (remember that abstention is always a
strictly dominated action). In a similar setting to ours, Forsythe et al (1993) allowed for abstention and
found that the abstention rate was as low as 0.65%.
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Treatment
Voting
rule

Minority
size (nc)

Precision
Blue State

Precision
Red State

Sessions /
Ind. Obs.

Group
numbers

PL7 Plurality 7 2/3 2/3 3 / 6 1-6
PL9 Plurality 9 2/3 2/3 3 / 6 7-12
AV7 Approval 7 2/3 2/3 3 / 6 13-18
AV9 Approval 9 2/3 2/3 3 / 6 19-24
PL7B Plurality 7 8/9 2/3 3 / 6 25-30
AV7B Approval 7 8/9 2/3 3 / 6 31-36

Table 1: Treatment overview. Note: ind. obs. stands for “individual observations”.

participated in more than one session. Students were recruited through the online recruit-

ment system ORSEE (Greiner 2004) and the experiment was programmed and conducted

with the software z-Tree (Fischbacher 2007).

All experimental sessions were organized along the same procedure: subjects received

detailed written instructions, which an instructor read aloud (see supplementary appendix).

Each session proceeded in two parts: in the first part, subjects played one of the treatments

in fixed groups for 100 periods.25 Before starting, subjects were asked to answer a ques-

tionnaire to check their full understanding of the experimental design. In the second part,

subjects received new instructions, and made 10 choices in simple lotteries, as in Holt and

Laury (2002). We ran this second part to elicit subjects’ risk preferences.

To determine payment, the computer randomly selected four periods from the first part

and one lottery from the second part.26 In total, subjects earned an average of €13.47,

including a showup-fee of €3. Each experimental session lasted approximately one hour.

6 Experimental Results

Section 6.1 presents our experimental results when information is unbiased, and Section

6.2 when it is biased. Section 6.3 turns to individual behavior and extends the model to

asymmetric equilibria. Finally, Section 6.4 turns to aggregate outcomes and welfare.

25 In the setup of the Condorcet Jury Theorem, Ali et al (2008) find no significant difference between
random matching (or ad hoc committees) and fixed matching (or standing committees).

26 In the first round of experiments (the seven sessions with the groups 1, 2, 7, 8, 9, 10, 13, 14, 15, 16,
19, 20, 21 and 22), we selected seven periods to determine payment. We reduced this to four periods after
realizing that the experiment had taken much less time than expected. We find no difference in behavior
between these two sets of sessions.
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Minority Periods Periods Equilibrium
Treatment Size 1-50 51-100 Sincere Voting Duverger’s Law
PL7 Small Signal 91.80 90.94 100.00 50.00

Opposite 7.78 8.89 - 50.00
Gray 0.42 0.17 - -

PL9 Large Signal 68.47 59.25 100.00 48.92∗

Opposite 31.11 40.67 - 51.08∗

Gray 0.41 0.08 - -

Table 2: Aggregate voting behavior in plurality treatments with unbiased information, separated
by first and second half, and equilibrium predictions. ∗ In the case of Duverger’s Law in PL9, the
prediction is adjusted to the color that each group converged to.

6.1 Unbiased Treatments

6.1.1 Plurality

As shown in Section 3, two types of equilibria coexist under plurality when information is

unbiased: Duverger’s Law and sincere voting equilibria. In the former type of equilibria,

participants should disregard their signal and coordinate on voting always blue or always

red. In the latter instead, participants should vote their signal. Table 2 shows the average

frequencies with which subjects voted sincerely (we call this voting the signal), for the

majority color opposite to their signal (we will call this voting opposite) or for gray.27

In the presence of a small minority, the participants’ voting behavior is consistent with

sincere voting: taking an average across all groups and periods, 91.38% of the ballots were

sincere in PL7, with a lowest value of 86.42% in one independent group. This behavior

is quite stable over time: we regressed the frequency of “voting the signal” on the period

number, and found that the coefficient was not significantly different from zero. Most

deviations from sincere voting behavior consisted of “voting opposite”, which might be

related to the “gambler fallacy”.28 Finally, less than 0.5% of the votes went to gray.

Voting behavior is substantially different in the presence of a large minority (PL9). First,

only 63.86% of the observations are consistent with sincere voting. Second, performing the

27The figures with a ‘*’ report the predicted voting pattern for the last 50 periods, conditional on the
color on which the group coordinated. For instance, if the group coordinated on blue, and if 40% of the
voters obtain a blue ball in a given draw, then 40% should play “signal” and 60% “opposite”.

28The gambler’s fallacy is the mistaken notion that the likelihood of an event that occurs with a fixed
probability increases or decreases depending upon recent occurrences. The gambler’s fallacy has been docu-
mented extensively (see e.g. Tversky and Kahneman 1971). In our experiment, the gambler’s fallacy might
lead subjects to disregard signals on the ground that the perceived likelihood of the signal being wrong is
higher than the likelihood of the signal being right after some particular histories.
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same regression on the period number, we found a clear and significant (p-value: 1%) trend:

the frequency of voting the signal decreases over time. Participants begin the experiment by

voting sincerely (94.44% of them voted their signal in the first period) but rapidly abandon

that strategy (see below) and eventually adjust their behavior by voting against their signal

(only 53.70% voted sincerely in the last period). This pattern is fully consistent with

the progressive shift from a sincere voting equilibrium to a Duverger’s Law equilibrium.

Figure 1 illustrates this shift by plotting the observed frequency of voting blue, red and

gray (irrespective of the signals subjects receive) for each group in the PL9 treatment.

The horizontal dashed line displays the minimal vote share required to defeat gray (in

case nobody plays the dominated strategy of voting gray). As one can see, all six groups

converged to a Duverger’s Law equilibrium.
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Gray Min Percentage to Win
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Figure 1: Frequence of voting blue, red and gray irrespective of the signal in groups of treatment
PL9U. The dashed line indicates the minimum frequence of vote share required to defreat gray (in
case nobody from the majority votes for the Condorcet loser).

This raises two empirical questions relating to equilibrium selection. The first one is why

all groups selected a Duverger’s Law equilibrium in the PL9 treatment, and the informative

equilibrium in the PL7 treatment. The second question is how each PL9 group selected its

Duverger’s Law equilibrium.

We can identify at least two reasons why Duverger’s Law equilibria are the most natural
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focal point in PL9: first, the expected utility in the informative equilibrium is 69.76 in PL9,

instead of 152.76 in PL7. This compares with an expected utility of 155 in a Duverger’s

Law equilibrium. The incentive to get away from sincere voting is thus substantial in PL9.

Second, the range of strategy profiles for which sincere voting is a best response is quite

narrow in the case of PL9. The phase diagrams in Figure 2 illustrate this graphically. The

horizontal axis displays the other blue voters’ propensity to vote blue, and the vertical axis

displays the other red voters’ propensity to vote red. The solid curve represents the locus of

strategies for which a given voter is indifferent between playing blue and red if she receives

a blue ball. To the left of that curve, her payoff of playing red is higher than that of playing

blue, and conversely to the right of the curve. The dashed curve represents the equivalent

locus for a voter who receives a red ball. Above the curve, she prefers red to blue, and

conversely below the curve. The arrows display the attraction zones of each of the three

equilibria mentioned: sincere voting in the top right corner, and the two Duverger’s Law

equilibria in the bottom right and top left corners. The attraction zone of the sincere voting

equilibrium is much larger in PL7 than in PL9.29 Therefore, even relatively small deviations

from sincere voting make it optimal to vote for the leading majority candidate in PL9.

Figure 2: Phase diagram of treatments PL7 and PL9. The horizontal axis displays the probability
of sincere voting by blue voters while the vertical axis displays the probability of sincere voting by
red voters. The solid line indicates the indifference curve for the blue voters, while the dashed line
indicates the indifference curve for the red voters.

29Confronting the strategies actually played by the subjects to these theoretical predictions, we found
that, even in early periods, the typical strategy falls outside the sincere voting attraction zone in PL9, and
inside that zone in PL7.
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Periods Periods
Treatment Minority Size 1-50 51-100 Equilibrium
AV7 Small Signal 70.92 71.94 64.00

Double Vote 22.22 24.36 36.00
Opposite 6.50 3.69 -
Gray 0.36 0.00 -

AV9 Large Signal 47.08 43.33 30.00
Double Vote 45.67 51.64 70.00
Opposite 6.86 4.97 -
Gray 0.39 0.06 -

Table 3: Aggregate voting behavior in approval voting treatments with unbiased information. Gray
refers to voting for gray or a combination of gray and others.

Turning to the second question, most groups coordinate on the first color obtaining

strictly more than six of the majority votes.30 This is in line with the findings of Forsythe

et al (1993, p235): “a majority candidate who was ahead of the other in early elections

tended to win the later elections, while the other majority candidate was driven out of

subsequent races”. Yet, the transition from sincere voting to the selected Duverger’s Law

equilibrium can take a substantial amount of time: the first period from which either blue

or red repeatedly obtained enough votes to win was 50, 59, 83, 63, 21 and 26 for groups

7—12 respectively. This shows that experiments using shorter horizons may fail to capture

equilibrium convergence. A reason can be the time needed to learn which strategy is actually

played by the other voters (see Fey 1997 for an analysis of such dynamics).

6.1.2 Approval Voting

Table 3 summarizes behavior in AV treatments. It displays the frequencies with which

subjects single vote their signal, double vote red and blue, single vote opposite to their

signal, and vote gray (possibly in combination with another candidate).

These two treatments reproduce the parametric cases covered in Example 3, which we

found to display a unique symmetric equilibrium. In that equilibrium a voter should only

single vote her signal or double vote blue and red. A huge majority of actions were in

line with this theoretical prediction: 94.73% in the case of AV7 and 93.86% in the case of

AV9. One could think that AV involves higher complexity and therefore higher frequency

of mistakes, but we actually observed the opposite. We define mistakes as playing an action

30 It happened in period 1 for four groups and in period 2 for one group. The only exception is group 11,
where blue got 7 votes in the first period and then red received more votes from period 2 onwards.
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that is not a best response to the equilibrium. That is, in PL7, AV7 or AV9, a subject made

a mistake when she voted opposite to her signal or for gray; in PL9, she made a mistake

when voting for another color than the one the rest of the group converged to. We find

that subjects made more mistakes under plurality than under AV. In treatments with a

small minority, the percentages of mistakes in the second half (where equilibrium selection

is clearer) were 3.69% in AV7 as opposed to 9.06% in PL7. In treatments with a large

minority, they represented 5.03% of the ballots in AV9 as opposed to 11.06% in PL9. These

differences are significant in both cases (Mann-Whitney, z = 2.082, p = 0.0374 with c = 7

and z = 1.925, p = 0.0542 with c = 9).31

The second theoretical prediction drawn from Example 3 refers to the effect of minority

size: it should increase the frequency of double voting. The rationale is that voters need to

double vote more to contain the risk that gray wins. Table 3 shows that this is indeed the

way in which the subjects adapted their voting behavior: the percentage of double voting

was multiplied by more than two, from 23.29% in treatment AV7 to 48.66% in treatment

AV9. This difference is significant at 1% (Mann-Whitney, z = 2.722, p < 0.01).

Although the comparative statics go in the direction predicted by theory, one should

notice that the amount of double-voting was well below theoretical predictions: 24.36%

instead of 36.00% in treatment AV7, and 51.64% instead of 70.00% in treatment AV9.

These differences are significant at 5% in both cases (Mann-Whitney, z = 2.201, p < 0.05).

Section 6.3 returns to this discrepancy to show that asymmetric equilibria help explain this

gap.

6.2 The Effects of Biased Information

In PL7, we observed that all independent groups coordinated on the sincere voting equi-

librium. One reason might be the symmetry between the blue and red signals, which made

coordination challenging for the subjects. In treatment PL7B, we instead made the signal

structure strongly biased in favor of the blue signal by setting r (blue ball | blue jar) = 8/9.
So, if the voters were to keep playing sincere, blue would win disproportionately more often

than red. Together with Example 2, Propositions 1 and 3 show that voters may still coor-

dinate on either the Duverger’s Law equilibrium or the informative equilibrium. Example

2 showed that, to aggregate information, blue voters should then adopt a strictly mixed

strategy and vote red with probability 8.43%.

In the experiment, we observe that one independent group (group 28) out of six coordi-
31 In all nonparametric tests we use a matching group as an independent observation.
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Periods Periods
1-50 51-100 Equilibrium

Signal if blue 92.99 90.75 91.53
Opposite if blue 6.89 8.38 8.47
Signal if red 96.39 97.48 100
Opposite if red 3.13 1.74 0
Gray 0.27 0.83 0

Table 4: Aggregate voting behavior in treatment PL7B. Group 28 was excluded given that it
converged to a Duverger’s Law equilibrium.

nated on the “blue” Duverger’s Law equilibrium, whereas the other five adopted a strategy

coherent with the informative equilibrium of Example 2. Let us analyze each in turn: in

group 28, almost all voters cast a blue ballot as of period 31: from that period onwards,

blue obtained at least seven votes in all cases, and strictly more than seven in 94.29% of

the cases.32 Table 4 summarizes the behavior of the other 5 independent groups. Focusing

on the last fifty periods, we observe that blue voters indeed voted red with a probability

close to the theoretical prediction, whereas red voters mainly voted sincerely. The differ-

ence between these two behaviors is statistically significant (Mann-Whitney, z = 2.023,

p < 0.043). Moreover, we do not find any statistically significant difference between the

theoretical prediction and the observed frequency of voting blue when getting a blue ball

(Mann-Whitney, z = 0.405, p = 0.6858).

The model helps identify two reasons why the informative equilibrium is more likely to

be selected. First, it yields a higher expected payoff than Duverger’s Law equilibria (178.37

instead of 155). Second, as identified by the phase diagram displayed in Figure 3, when

starting from sincere voting (the top-right corner), the local dynamics of individual best

responses point towards the informative mixed strategy equilibrium (the point MSE on the

graph) rather than towards either Duverger’s Law equilibria.

These data provide ample evidence that three-candidate equilibria are a natural focal

point when voters have common values. Note also that subjects do not simply play “sincere”.

They actually adjusted their behavior to better aggregate information. We believe that our

experimental results are the first to identify this pattern in a three-candidate setting.

Approval voting offers the opportunity to double vote to achieve the dual objectives of

32The fact that the only group that converged to a Duverger’s Law equilibrium did coordinate on blue is
coherent with the idea that biased signals foster coordination. However, this intuition cannot be tested since
there is only one such group to study. Moreover, the results in PL9 offer an alternative rationale, which is
that voters coordinate on the color that won in the first period(s).
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Figure 3: Phase diagram of treatment PL7B. The horizontal axis displays the probability of sincere
voting by blue voters, while the vertical axis displays the probability of sincere voting by red voters.
The solid line indicates the indifference curve for the blue voters; the dashed line indicates the
indifference curve for the red voters.

information aggregation and coordination. Treatment AV7B is the same as PL7B with the

only difference that subjects can exploit this opportunity. In this treatment, voters face

the more complex challenge of having to deal with a broader choice set but, as identified in

Example 4, their task is simplified by the fact that the equilibrium is now unique. Like in

the informative equilibrium of PL7B, blue voters should play blue less often than red voters

play red. The difference with PL7B is that blue voters should double vote instead of voting

red. Table 5 shows that the subjects’ behavior was in line with this prediction. Actually,

the difference between the blue and red voters is significant not only for the second half of

the sample but for the whole experiment (Mann-Whitney, z = 2.201, p = 0.028).

6.3 Individual Behavior

We begin by describing individual behavior in plurality treatments with unbiased informa-

tion. These cases do not allow for much variation among players: in treatment PL7 most

subjects voted sincerely throughout the entire experiment: 43.06% of the participants al-

ways did and 88.89% of the subjects voted sincerely more than 75% of the occasions. As we

saw, behavior is somewhat different in PL9, since voters always converged to a Duverger’s

law equilibrium, although slowly. In the last half of the experiment, 88.94% voted for the
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Periods Periods
1-50 51-100 Equilibrium

Signal if blue 66.95 61.16 50.1
Double Vote if blue 29.87 37.16 49.9
Signal if red 74.56 80.52 92.6
Double Vote if red 20.52 17.98 7.4
Opposite 2.94 1.56 0
Gray 0.89 0.06 0

Table 5: Aggregate Voting Behavior in treatment AV7B.

color their group converged to.

The case of AV is more interesting. Figure 4 disaggregates behavior at the individual

level in the last fifty periods of treatments AV7 (left panel) and AV9 (right panel). The

horizontal axis plots the frequency of voting the signal and the vertical axis plots the

frequency of double voting. Each circle in the graph corresponds to the observed frequency

of play. Its size represents the number of subjects who actually adopted that frequency:

the larger the number of subjects, the bigger the circle.

According to Theorem 2, subjects should only mix between voting the signal and double-

voting. If all subjects voted in this way, all the circles should be on the diagonal between

(0,1) and (1,0). Most circles are indeed on this diagonal but, instead of observing a large

number of voters playing the predicted mixed strategy, we observe significant heterogeneity

with two opposite clusters: one that plays the pure strategy of always double voting and

another one with subjects who always single vote their signal. The treatment effect observed

in Section 6.1.2 is mainly driven by a switch in the relative number of subjects in each cluster.

This pattern points at the need to consider asymmetric strategies. Pushing the line of

reasoning of McLennan (1998) and Ahn and Oliveros (2012) further, allowing for asymmetric

strategies can be interpreted as an extension of the group’s choice set, which may only

increase expected welfare. Allowing some voters to specialize in double or single voting

may produce significant advantages. The challenge is to identify potential equilibria when

allowing for asymmetric strategies.
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Figure 4: Individual behavior in AV treatments with unbiased information. Each hollow circle in
the graph corresponds to the observed frequence of play: its size represents the number of subjects
who actually adopted that frequence of play. The red circle represents the average frequency of play
observed, the orange triangle represents the symmetric equilibrium prediction and the green square
represents the asymmetric equilibrium prediction.

6.3.1 Asymmetric Equilibria with Approval Voting

In this subsection, we extend our theoretical analysis by relaxing the assumption of sym-

metric strategies, ubiquitous as it is in the voting literature.33 That is, we no longer impose

that voters who receive the same signal play the same strategy. The following proposition

proves, for a broad set of parameter values (including the ones used in the experiment),

the existence of at least one asymmetric equilibrium, i.e. in which voters play asymmetric

strategies. We also characterize this asymmetric equilibrium: voters specialize indepen-

dently of their signal in either single voting or double voting. That is, some voters always

single vote and others always double vote. If the signal structure is sufficiently unbiased,

all “single-voters” vote their signal, i.e. A if signal sA and B if signal sB. If the bias in

the signal structure is stronger, then the voters receiving the less abundant signal vote

sincerely whereas those who receive the more abundant signal mix between A and B. As

discussed below, it appears that this equilibrium helps rationalize the behavior observed in

33There are noticeable exceptions such as McLennan (1998), Ladha, Miller and Oppenheimer (2000) and
Dekel and Piccione (2000).
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the laboratory.

Proposition 4 Suppose that q (a) = q (b), r (sA|a) ≥ r (sB|b) and V ≤ 2v. Any strategy
profile satisfying the following conditions is an asymmetric equilibrium:

1. 2nC − n+ 1 voters always double vote;

2. The rest of the voters single vote informatively with σ1vsB (B) = 1 and

σ1vsA (A) =

⎧⎪⎪⎨⎪⎪⎩
ρ

n−nC
n−nC−1−1

ρ
n−nC

n−nC−1 r(sA|a)−r(sA|b)
if ρ

n−nC
n−nC−1 > r(sB |b)

r(sB |a) , where ρ =
r(sA|a)
r(sA|b)

1 if ρ
n−nC

n−nC−1 ≤ r(sB |b)
r(sB |a)

,

where σ1vs (ψ) is the probability that a single voter of type s plays action ψ.

Proof. See supplementary appendix.

Such an asymmetric behavior can be sustained in equilibrium because voters who spe-

cialize in single voting perceive the expected effect of any given ballot on the final outcome

differently from voters specializing in double voting. In particular, “single voters” are piv-

otal only when A, B, and C receive exactly the same number of votes, whereas “double

voters” are pivotal if either A is trailing behind by one vote or if it is leading by one vote.

The best responses of these two groups of voters are thus different. The following example

illustrates this result in more detail.

Example 5 Assume (as in Example 3) n = 12, nC = 7, and q (sA|a) = q (sB|b) = 2/3. In
the asymmetric equilibrium, 2nC −n+1 = 3 voters double vote, and the other 9 single vote

their signal.

Compared with the symmetric equilibrium, the aggregate level of double voting decreases

from 36% to 25%, but this is enough to ensure that the Condorcet loser never wins the elec-

tion. Indeed, with three double votes and nine single votes, one of the two majority alterna-

tives must receive at least eight votes, i.e. strictly more than the Condorcet loser. Finally,

the likelihood of choosing the best candidate increases from 82% in the symmetric equilib-

rium to 85.5%. The better aggregation of information holds because the (expected) number

of voters who reveal their information, i.e. the single voters, is larger in this asymmetric

equilibrium than in the symmetric one (9 vs. 7.68).

Such asymmetric equilibria appear to organize laboratory data better than the symmet-

ric equilibrium. In treatment AV7, the predicted level of double voting in the asymmetric
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Periods Periods Equilibrium
Treatment 1-50 51-100 Symmetric∗ Asymmetric
PL7 136.70 138.50 154.87 -
PL9 101.15 147.80 156.20 -
PL7B 169.85 171.95 178.76 -
AV7 167.00 183.95 179.65 189.80
AV9 146.75 168.95 164.70 181.10
AV7B 188.90 192.50 193.58 194.68

Table 6: Average payoff and theoretical predictions. ∗ In the case of Plurality, equilibrium predic-
tions refer to the equilibrium where experimental groups converged to.

equilibrium is 25% compared to the observed 24.46%. The difference is not significant

(Wilcoxon, z = -0.524 p = 0.6002). In the case of AV9, the predicted level of double voting

is 58.33% compared to the observed 51.64%. The difference is still significant (Wilcoxon, z

= 2.201, p = 0.0277) although the gap is much smaller.

The equilibrium described in Proposition 4 also makes an interesting prediction for

the biased treatment AV7B. In the asymmetric equilibrium, the level of double voting is

independent of the signal structure. This is not what we observe in the data (see Table 5).

Although it is beyond the scope of this paper, it might be useful to explore other types of

asymmetric equilibria in this type of setting.

6.4 Welfare and Outcomes

Previous multicandidate election setups used in laboratory experiments were based on the-

ories that are inconclusive when it comes to comparing welfare across voting systems. The

theoretical predictions of Myerson and Weber (1993) used in Forsythe et al. (1996), for in-

stance, do not make a clear-cut comparisons between plurality and AV. A valuable feature

of our common value setup is that it allows for clear welfare predictions: in equilibrium,

the active voters’ payoff should be strictly higher with AV than with plurality.

Table 6, columns 2 and 3, displays the average payment obtained by the subjects in

each treatment, respectively for the first and second fifty periods. Comparing PL and AV

treatments two by two, one can see that realized payoffs are systematically higher in AV

treatments. All these differences are significant at a 1% confidence level.34

It is also interesting to see the effect of the size of the minority. In plurality, the

34Mann-Whitney tests are: z = 2.882 and p-value 0.0039 for AV7-PL7, z = 2.722 and p-value = 0.0065
for AV9-PL9, and z = 2.913 and p-value = 0.0036 for AV7B-PL7B.

31



expected payoff should be strictly decreasing in nC in an informative equilibrium, whereas

it is independent of nC in a Duverger’s Law equilibrium. In the case of our experiment, the

expected payoff of Duverger’s Law equilibria is 155. Table 6 shows an interesting reversal:

in the first half, the average payoff is higher in treatment PL7 than in treatment PL9,

while the opposite is true for the second half. This is explained by the progressive switch

towards a Duverger’s Law equilibrium under PL9, and the selection of the sincere voting

equilibrium in PL7. The latter happens in spite of the fact that Duverger’s Law equilibria

payoff dominate sincere voting in both treatments. On the other hand, the slow convergence

process in PL9 treatments explains why payoffs are so low for the first fifty periods. Across

the entire experiment session, payoff is lower under PL9 than under PL7 (Mann-Whitney

test, z = 1.922, p-value = 0.0547).

In the case of AV the theoretical prediction is unambiguous since the voters’ payoffs is

predicted to be strictly decreasing with the size of the minority, both in the symmetric and

asymmetric equilibria. As one can see from Table 6, this is what we observe in the data

(Mann-Whitney test, z = 2.242, p-value = 0.0250). This is due to a remarkable increase in

the frequency of victory of the best candidate, combined with a drop in the frequency of

victory of the Condorcet loser. This observation can be made in all two-by-two comparisons,

including PL9 against AV9, because gray won 10% of the times even in the second half of

the PL9 experiment, due to slow convergence towards the equilibrium.

7 Conclusions

In this paper we studied the properties of plurality and approval voting both theoretically

and experimentally. We considered a case in which the majority is divided between two

alternatives as a result of information imperfections, while the minority backs a third alter-

native, which the majority views as strictly inferior. The majority thus faced two problems:

aggregating information and coordinating to defeat the minority candidate.

In plurality, two types of equilibria coexist: Duverger’s Law equilibria, which fulfill the

coordination purpose at the expense of information aggregation, and informative equilib-

ria, in which majority voters aggregate information but open the door to a victory of the

Condorcet loser. Interestingly, this equilibrium is not “knife edge”. This theoretical find-

ing helps rationalize some empirical regularities in the literature that are oft-considered as

supporting evidence for the lack of a “rational-instrumental” voting behavior. In approval

voting (AV), the structure of incentives is quite different. In equilibrium, some majority
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voters should double vote. This allows for information aggregation and a significant reduc-

tion in the threat posed by the Condorcet loser. As a consequence, AV produces strictly

higher expected welfare.

We then tested our predictions with laboratory experiments: under plurality, we ob-

served the emergence of both informative (when minority size was small) and Duverger’s

Law equilibria (when minority size was large). Under AV, double voting increased welfare

significantly: the subjects’ behavior allowed them to elect the full information Condorcet

winner with a probability very close to what a social planner would have achieved after

observing all available signals. Such behavior is statistically different from “sincere voting”

and consistent with most theoretical predictions. However, in contrast with our theoretical

prior, we also found that subjects used asymmetric strategies. This led us to extend the

theoretical analysis in that direction.

We believe that this paper opens up many novel theoretical and experimental questions

about multicandidate elections: how would other voting rules perform in such a common

value setup? How would plurality and AV perform when majority voters have a mix of

private and common values? What are the equilibria in asymmetric strategies under different

voting rules? How do voter characteristics influence the role that each of them assumes

within such equilibria? Last but not least, how do voters select between equilibria?
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Appendices

Appendix A1: Pivot Probabilities and Correcting Terms in AV

The pivotal event pivAVAC is defined as follows:

xA > xB − 1 and xA + xAB ∈ {nC − 1, nC}
xA = xB and xA + xAB = nC , or

xA = xB − 1 and xB + xAB = nC .

With the multinomial distribution: Pr (x|ω) = n!
Y

ψ∈ΨAV

τωψ(σ)
x(ψ)

x(ψ)! . Therefore, the probability of event

pivAC in state ω under AV is:
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πωAC ≡ Pr
¡
pivAVAC |ω

¢
= (n− 1)!

1X
i=0

2(nC−i)−nX
xAB=0

(τωA)
nC−i−xAB (τωAB)

xAB (τωB)
(n−1)−(nC−i)

2(nC−i−xAB)! xAB! (n−1−nC+i)!

+
(n− 1)!
3

[τωAτ
ω
B]

n−1−nC (τωAB)
2nC+1−n

[(n−1−nC)!]2 (2nC−n+1)!
+
(n− 1)!
6

(τωA)
n−1−nC (τωAB)

2nC−n(τωB)
n−nC

(n−1−nC)! (n−nC)! (2nC−n)! .

πωBC can be computed similarly. The pivot probability of piv
AV
AB is given by:

πωAB ≡ Pr
¡
pivAVAB |ω

¢
= (n− 1)!

1X
i=0

n+2(i−1)−nCX
k=i

(τωA)
k−i(τωAB)

n+(i−1)−2k(τωB)
k

2k!(k−i)!(n+i−1−2k)!

+
(n− 1)!
3

[τωAτ
ω
B]

n−1−nC (τωAB)
2nC+1−n

[(n−1−nC)!]2 (2nC−n+1)!
+
(n− 1)!
6

(τωA)
n−1−nC (τωAB)

2nC−n(τωB)
n−nC

(n−1−nC)! (n−nC)! (2nC−n)! ,

and πωBA is defined in the same way.
Using the pivot probabilities and the expected gains of the different actions (i.e. (11) , (12) , and

(13)), we can compute the correcting terms φa and φb:35

φa = [Pr (XA = XB = nC − 1|a) (V + v) + Pr (XA = XB + 1 = nC |a) v + ...

...+Pr (XA + 1 = XB = nC |a)V +Pr (XA = XB = nC |a) (V + v)]/6, and

φb = [Pr (XA = XB = nC − 1|b) (V + v) + Pr (XA = XB + 1 = nC |b)V + ...

...+Pr (XA + 1 = XB = nC |b) v +Pr (XA = XB = nC |b) (V + v)]/6.

To understand what these correcting terms represent, consider the case in which, without voter i’s
ballot, both alternatives A and B lose to C by one vote (that is, both obtain nC−1 votes). A single-
A ballot creates a tie between A and C. Thus, the ballot is pivotal in favor of A with probability
1/2. Likewise, a single-B ballot is pivotal in favor of B with probability 1/2. Yet, a double vote AB
creates a three-way tie, which still allows C to win with probability 1/3: the winning probabilities
of A and B are 1/3 instead of 1/2. Summing up the probabilities πaAC and πaBC thus overestimates
the value of the double ballot by (V + v) /6. φa and φb correct for these overestimations in that and
three other cases: when A trails behind both B and C by one vote, when B trails behind both A

and C by one vote, and when A, B and C have the same number of votes. We directly see that
φω = 0 when τωAB ∈ {0, 1}, or τωA = 0, or τωB = 0.

7.1 Appendix A2: Plurality, Equilibrium Analysis

Proof of Proposition 3. Consider a distribution of signals such that r (sA|a)−r (sB|b) > δ (n, nc),
in which case sincere voting is not an equilibrium. That is, there exists a signal s̄ ∈ {sA, sB}
such that all the voters who received signal s̄ strictly prefer to deviate from a strategy profile
σsincere ≡ {σsA (A) , σsB (B)} = {1, 1} .

Case 1: s̄ = sA. In this case, σsincere ⇒ G (A|sA)−G (B|sA) < 0. Now, consider a second strategy

35Proof available upon request.
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profile σ0 ≡
n
[r (sA|a) + r (sA|b)]−1 , 1

o
. With this profile, we have: τaA = τ bB and τ bA = τaB, and

thus pbBC = paAC > 0 and pbAC = paBC > 0 and, from (8):

G (A|s)−G (B|s) = [V paAC − vpaBC ] [q (a|s)− q (b|s)] , (16)

where (i) [V paAC − vpaBC ] is positive, and (ii) [q (a|s)− q (b|s)] is positive for sA and negative for sB.
In other words, all voters would strictly prefer to deviate from σ0 by voting sincerely. This means that
the value of G (A|sA)−G (B|sA) changes sign when σsA (A) is increased from [r (sA|a) + r (sA|b)]−1

to 1.
Since all pivot probabilities are continuous in σsA , the differential G (A|sA) − G (B|sA) is also

continuous in σsA . This implies that there must exist a value σ
∗
sA (A) ∈

³
[r (sA|a) + r (sA|b)]−1 , 1

´
such that voters with signal sA are indifferent between playing A and B.

Now, we prove that the strategy profile {σsA (A) , σsB (B)} =
©
σ∗sA (A) , 1

ª
is an equilibrium.

This profile implies: τaA ∈
³

r(sA|a)
r(sA|a)+r(sA|b) , r (sA|a)

´
and τ bB ∈

³
r (sB |b) , r(sA|a)

r(sA|a)+r(sA|b)

´
and hence:

τaA > τ bB >
nC
n

> τ bA > τaB ; p
a
AC > paBC and pbBC > pbAC .

Since G (A|sA)−G (B|sA) = 0 for that strategy profile, we know from (8) that:

q (a|sA) [V paAC − vpaBC ] = q (b|sA) [V pbBC − vpbAC ], (17)

where both sides of the equality are strictly positive. Since q (a|sB) < q (a|sA), (17) implies:

q (a|sB) [V paAC − vpaBC ] < q (b|sB) [V pbBC − vpbAC ], (18)

which means that a voter who received signal sB strictly prefers to play B.

Case 2: s̄ = sB. In this case, σsincere ⇒ G (A|s) − G (B|s) > 0 for both signals. Now, consider
another strategy profile σ00 ≡ {ε, 1}, with ε → 0 (and hence σsA (B) → 1). From Proposition 1,
this strategy profile implies G (A|s)−G (B|s) < 0 for both signals. By the continuity of the payoffs
with respect to σsA (A) , there must therefore exist a value σ

∗∗
sA (A) ∈ (0, 1) such that G (A|sA) −

G (B|sA) = 0 and, by the same argument as in (17− 18), G (A|sB) − G (B|sB) < 0. Hence, the
strategy profile {σsA (A) , σsB (B)} =

©
σ∗∗sA (A) , 1

ª
is an equilibrium.

Note that sincere stability is not a binding restriction, since all voters vote for their preferred
alternative with a probability strictly larger than 0.

Appendix A3: Approval Voting, Equilibrium Analysis

Lemma 2 If there exists a signal s such that

GAV (A|s)−GAV (AB|s) = 0 then GAV (A|sA)−GAV (AB|sA) > GAV (A|sB)−GAV (AB|sB) (19)

GAV (B|s)−GAV (AB|s) = 0 then GAV (B|sB)−GAV (AB|sB) > GAV (B|sA)−GAV (AB|sA) , and
GAV (A|s)−GAV (B|s) = 0 then GAV (A|sA)−GAV (B|sA) > GAV (A|sB)−GAV (B|sB) .
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Proof. We detail the proof for (19). It is similar for the other two implications. Remember that
the second term in (14) is necessarily negative. Thus GAV (A|s)−GAV (AB|s) = 0 implies that the
first term must be strictly positive. It follows immediately that:

GAV (A|s)−GAV (AB|s) ≥ 0 iff q (a|s)
q (b|s) ≥

πbAB (V − v) + πbBCV − φb

πaAB (V − v)− πaBCv + φa
.

Thus, (19) follows from q(a|sA)
q(b|sA) >

q(a|sB)
q(b|sB) .

Lemma 3 In any voting equilibrium under AV, neither A nor B can be approved by all voters.

Proof. We prove the proposition by contradiction and for the limit case in which ε = 0. By
definition the results hold when ε > 0.

Policy A is approved by all voters if and only if σsA (A) + σsA (AB) = 1 = σsB (A) + σsB (AB) .

In this case, we have: xA + xAB = n and hence πωAC = 0 = πωBC and φω = 0. The only possible
pivot events are when xAB = n− 1 or n− 2. Hence:

G (A|s)−G (AB|s) =
£
q (a|s)πaAB − q (b|s)πbAB

¤
(V − v) ≷ 0

G (B|s)−G (AB|s) =
£
q (b|s)πbBA − q (a|s)πaBA

¤
(V − v) ≷ 0.

with: πωAB =
(τωAB)

n−1

2 , and πωBA =
(τωAB)

n−2

2 [(n− 1) + (2− n) τωAB ] . Therefore,

πbBA
πaBA

=

µ
τ bAB
τaAB

¶n−2
(n− 1) + (2− n) τ bAB
(n− 1) + (2− n) τaAB

, (20)

πaAB
πbAB

=

µ
τaAB
τ bAB

¶n−1
(21)

Now, we show that πbBA
πaBA

is increasing in τbAB
τaAB

(from (21) , it is straightforward that πaAB
πbAB

is also

increasing in τaAB
τbAB

). Taking logs, we have that the right-hand side of (20) is

(n− 2)
£
log τ bAB − log τaAB

¤
+ log

£
(n− 1) + (2− n) τ bAB

¤
− log [(n− 1) + (2− n) τaAB ]

Differentiating with respect to τ bAB yields:

n− 2
τ bAB

− n− 2
(n− 1) + (2− n) τ bAB

.

This is non-negative if and only if τ bAB ≤ 1. Therefore, we have that πbAB > πaAB and πbBA > πaBA
when τ bAB > τaAB, and conversely.

We now use this result to prove that A cannot be approved by all voters. From Theorem
1, Lemma 2, and Lemma 2 (in this Appendix), there are 2 cases to check: (i) σsA (A) = 1 and
σsB (A) ∈ [0, 1), and (ii) σsB (A) = 0 and σsA (A) ∈ (0, 1]. If σsA (A) = 1 and σsB (A) ∈ [0, 1), then
τ bAB > τaAB . Hence, we have that π

b
BA > πaBA, which implies G (B|sB) − G (AB|sB) > 0. Thus,

39



there cannot be any equilibrium in which σsA (A) = 1 and σsB (A) ∈ [0, 1). If σsA (A) ∈ (0, 1] and
σsB (A) = 0, then either τaAB > τ bAB or τaAB < τ bAB. If τ

a
AB > τ bAB, then πaAB > πbAB, and thus

G (A|sA)−G (AB|sA) > 0. If τaAB < τ bAB, then πbBA > πaBA, and thus G (B|sB)−G (AB|sB) > 0.
Therefore, there cannot be any equilibrium in which σsB (A) = 0 and σsA (A) ∈ (0, 1].

Proof of Theorem 1. From McLennan (1998), a strategy that maximizes expected utility must
be an equilibrium of such a common value game (and any finite Bayesian game like ours must have
an equilibrium). Now, conjecture some strategy profile σ that can be played under plurality. That
is, σs (AB) = 0 for s = sA, sB. In this case, πωAB = πωBA = φω = 0 < πωAC , π

ω
BC , ω = a, b. Therefore,

GAV (A|s) − GAV (AB|s) < 0 and GAV (B|s) − GAV (AB|s) < 0, ∀s. This means that τωAB = 0

cannot be part of an equilibrium under AV, and that the welfare-maximizing equilibrium under AV
must produce strictly higher expected utility than plurality.

It remains to show that this equilibrium is sincerely stable. We actually show the stronger
statement that, to maximize expected welfare, a strategy must satisfy σsA (A) , σsB (B) > 0. We
show this by contradiction: suppose that σ̂ maximizes expected welfare and is such that σ̂sA (A) = 0.
By Lemma 3, we have τωA, τ

ω
B, τ

ω
AB > 0 and hence σ̂sB (A) > 0. Then, compare σ̂ with some other

strategy σ0 in which sA-voters transfer some of their votes from B towards AB, whereas sB-voters
adapt their voting strategy so as to maintain all vote shares unchanged in state b.36

As a result, the total vote share of A in state a must increase (i.e. τaA (σ
0) + τaAB (σ

0) >

τaA (σ̂)+ τaAB (σ̂)), whereas the expected fraction of double votes increases (the total vote share of B
remains unchanged). As a result, in state a, the probability that A wins must increase, whereas the
probability that C wins decreases weakly. In state b, winning probabilities are unchanged. Hence, σ̂
cannot maximize expected welfare: a contradiction.

Proof of Theorem 2. We prove the Theorem in two steps. First, we show that there is no interior
equilibrium in which a voter strictly mixes across the three actions A, B, and AB. Second, we show
that sA-voters never play B, nor sB-voters play A in an interior equilibrium. It follows that the only
possible interior equilibrium is such that voters with signal sA mix between A and AB, and voters
with signal sB mix between B and AB.

First, conjecture an equilibrium in which σsA (A) , σsA (B) , σsA (AB) > 0. This requires
G (A|sA) = G (B|sA) = G (AB|sA). In this case, by Lemma 2 (in this Appendix), sB-voters must
be playing B with probability 1, i.e. σsB (B) = 1. The equilibrium is therefore not interior, a con-
tradiction. Similarly, sA-voters must play A with probability 1 if sB-voters strictly mix between A,

B, and AB.
Second, imagine that sB-voters playAwith strictly positive probability in equilibrium: σsB (A) ∈

(0, 1). This requires either (i) G (A|sB) = G (AB|sB) ≥ G (B|sB) or (ii) G (A|sB) = G (B|sB) ≥
G (AB|sB) . By Lemma 2, both (i) and (ii) imply that G (A|sA) > G (AB|sA) , G (B|sA) , and hence
that A’s strategy cannot be interior. By symmetry, σsA (B) ∈ (0, 1) cannot be part of an interior
equilibrium either.

36 If σ̂sA (AB) = 1, then one must consider a transfer of sA-votes from AB towards A, and sB-voters
adapt their strategy to maintain all τaψ unchanged.
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