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Abstract

The literature on spurious regressions has found that steistic for testing the null of no
relationship between two independent variables diverges asymptoticaky arwide variety
of nonstationary data generating processes for the dependent@adatrry variables. This
paper introduces a simple method which guarantees convergence ie$thistic to a pivotal
limit distribution, when there are drifts in the integrated processes genethgngata, thus
allowing asymptotic inference. We show that this method can be used to distirggenuine
relationship from a spurious one among integratéd Y and(2)) processes. Simulation ex-
periments show that the test has good size and power properties in smadkksalivie apply
the proposed procedure to several pairs of apparently indepentigrated variables (includ-
ing the marriages and mortality data of Yule, 1926), and find that our puoegedh contrast
to standard ordinary least squares regression, does not findb{spusignificant relationships
between the variables.
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1 Introduction

For many years, the statistics and econometrics litersifusge studied the phenomenon of spuri-
ous relationships among independent variables under awaidety of data generating processes
(DGPs). One early reference is that of Yule (1926), which findsrastation above 95% between
the proportion of Church of England marriages to all marrseayed the mortality rate, for the years
1866-1911. More recently, using computer simulation meshdranger and Newbold (1974)
found a significant-ratio for the slope parameter in a simple linear regressodel, assuming
independent driftless random walks for the dependent aptheatory variables. Later on, the
asymptotic theory developed by Phillips (1986) providelentetical explanation of the results in
the experimental study of Granger and Newbold (1974)t#tagio does not possess a limiting dis-
tribution, it rather diverges to infinity as the sample sirevgs, implying that, asymptotically, the
t-ratio would always reject the (true) null of no relationshThe rate at which the statistic diverges
is T/2, according to Phillips (1986) When allowing for drifts in the random walk representation
for the dependent and explanatory variables in a lineaessgon model, Entorf (1997) shows that
divergence occurs at (a faster) rdte In a recent paper, Noriega and Ventosa-Saat&au(2007)
show that the phenomenon of spurious regression is peevaser a wide range of combinations
of DG Ps for both the dependent and explanatory variables.

In search for a convergemistatistic in spurious regressions, Sun (2004) recogritzatsthe
“divergence of the usualstatistic seems to be a defining characteristic of a spsinegression” (p.
943). He shows that such divergence arises from an undesdsti standard error of the ordinary
least square (OLS) estimator, and proposes an alternaiiraator, based on the HAC standard
error estimator with a bandwidth proportional to the sangie. In this set-up, the resultirtg
statistic no longer diverges. Sun (2004) finds, howevet,ttiea(convergent) limiting distribution
of the t-statistic depends on nuisance parameters; in particatathe memory parameters of
the underlying fractional processes he assumes for thendepeand explanatory variables. He
argues that, although of theoretical interest, thesetekal/e little practical importance, given that
parameters in th&G P are generally unknown, and therefore, inference is notlftas

In this paper, we take a different route. We propose to filtermuisance parameters via OLS
linear detrending on each variable. Residuals from thesessmns are then used to verify the

1In a subsequent paper, the representation theory devemp@tillips (1998) shows that a trending stochastic
(deterministic) process can be represented as an infingardicombination of trending deterministic (stochastic)ck
tions with random coefficients. In such an asymptotic emuiment, the regressiaonratios of the fitted coefficients
diverge at ratd™/2.

20ther papers studying the phenomenon of spurious regreasider different assumptions are: Marmol (1995,
1996, 1998), Cappuccio and Lubian (1997), Granger et. &98), Tsay and Chung (1999), Hassler (1996, 2000,
2003), Kim, Lee and Newbold (2004), Noriega and Ventosagdaria (2006), and Stewart (2006). A literature
review can be found in Ventosa-Santaig (2009).



significance of the relationship through a rescaled versidhe standard-statistic. An analogous
approach can be found in the seminal paper by Granger and dé\{#974), who argue, in the
context of estimating equations in econometrics, that “@e¢hod we are currently considering is
to build single series models for each variable, using ththads of Box and Jenkins (1970) for
example, and then searching for relationships betweeassbkyi relating the residuals from these
single models.” (pp. 117-118). They further argue that iding regression models, the quantity
to be explained is not the variation in the original series,the variation in the residual part.

Using asymptotic theory, we show that, when both dependeheaplanatory variables follow
an integrated process, the proposgeatatistic will not depend on nuisance parameters and will n
diverge, except for the case when the dependent and exptgnatriables are not independent,
effectively eliminating the spurious regression problaie also compute both finite sample and
asymptotic critical values, which can be used to distingaigenuine relationship from a spurious
one. Simulation experiments reveal that this procedur&svwaell in finite samples.

Next section briefly introduces the typeslof: Ps analysed in the paper, which are widely used
in empirical work in econometrics. Section 3 shows how stadidhference might be complicated
by the presence of nuisance parameters, even for (appepniescaled) convergetstatistics. In
order to overcome this problem, the approach outlined atmwiesting for a statistical relationship
in a simple regression model is introduced in Section 4, Wwhesults in both convergent and
pivotal limit distributions of the-statistic, thus allowing asymptotic inference. Sectigmrésents
Monte Carlo experiments which report size and power progedi the proposed testing procedure.
Section 6 presents several empirical applications of oacqumure. We find that, for instance,
the high statistical correlation between marriages andahty found by Yule (1926) is indeed
spurious, once our filtering procedure is applied. Lastiseconcludes.

2 Trending mechanisms in the DGP

We consider the following regression model, estimated b$pOL
Y = & + oy + iy, 1)

used as a vehicle for testing the null hypotheis: § = 0. Note that the nature of the trend-
ing mechanism in the dependent and explanatory variableskisown a priory. The following
assumption summarizes tli&s Ps considered below for both the dependent and the explanator
variables in model (1). Th&G Ps in Table 1 include stochastic trending mechanisms, whieh a
widely used in applied work in economics, to model varialdesh as nominal and real output,
consumption, money, prices, among others.



Table 1

ASSUMPTION The DGPs for z = y, z are as follows.
DGP Name Model

I(l) Azt = Uyt
[(1)+drift Az = p, + uy
|(2) AQZt = Uyt

Cl(1,1) wy=oa1+Bim +uy
Cl(2,1) Yy = g + Boxy + &
Corr(l)  y = az+ Bsx + &

o gk wbdE

In Table 1,u,, andu,, are independent innovations obeying Assumption 1 in PBi(L986), and
Eyt = > i, uyi, that is¢,, follows an (1) process. DGP 1 is a driftless random walk, while
DGP 2 is a random walk with driftu,. DGP 3 represents an integrated process with double
unit roots, that is, one that has to be differenced twice tkemistationary. UndeDGP 4, z, is
assumed to followDG Ps 1 or 2 and, if3; # 0, theny, andz, are cointegrated'/(1, 1), following
the notation in Engle and Granger (1987). In this case, eéveagh both variables arg1), the
linear combination produces stationary errors. UndéfrP 5 it is assumed that; follows an/(2)
process and, ifi, # 0, theny, andx, are cointegrated’/(2,1). Here a linear combination of
I(2) processes reduces the order of integratioh(19. Finally, DG P 6 corresponds to the case of
x; ~ I(1) with drift, correlated withy, (assumingss # 0), but not cointegrated, sinég; ~ I(1).
We call this case Corr(1), meaning that th{e) variables are (only) correlated.

3 The divergent nature of thet-statistic

Assume that interest centers on testing the null hypotloésie relationship between two random
variablesy andz, i.e., Hy : 6 = 0, using as a vehicle regression model (1). Rejection of the nul
when variables are independent is known as a spurious sgmes

In a recent paper, Noriega and Ventosa-Saataul(2007, NVS hereafter) showed that the
t-statistic (;) in a spurious regression does not possess an asymptdtibution under a wide
variety of Data Generating Processes, including trentissiary processes, single and double unit
root processes, broken-mean- and broken-trend-stayigmacesses, and combinations thereof.
Instead, the-statistic diverges to infinity as the sample size gréws.

In order to obtain a convergetistatistic, the latter should be rescaled¥y NVS find thatx
is generally 1/2, but in some cases- 1, or k = 3/2, depending on the trending behaviour of the

3These results were obtained by NVS from the calculation efdtder in probability of the-statistic for all
combinations of DGPs considered.



dependent and explanatory variables.

Theorem 1 presents the asymptotic behaviour oftatistict; from (1) for four combinations
of DG Ps in the Assumption: 1) a driftless random walk on a driftlesmsdom walk (calleo%),
2) a random walk with drift on a random walk with drift[%][, 3) a double unit root process on a
double unit root proce5$§0, and 4) a double unit root process on a double unit root mouader
cointegration [CI(2,1)] 1(5%).4 In the Theorem, convergence in distribution and in proligtére
denoted as® and-*, respectively, andV, is a standard Wiener process, i/,(r) is normally
distributed for every- in [0, 1]; that isW,(r) ~ N(0,r). To simplify notation, all integrals are
understood to be taken over the interjall|, with respect to the Lebesgue measure, i.e., integrals
such as[ W, [ W2, [rW,, and [ W, W, are short forfo1 W.(r)dr, fol W2(r)dr, [} rW.(r)dr,
andfo1 W, W,(r)dr, respectively. AlsolW . = [ W.(s)ds, fors € [0,1] 5 < r.

The proof of Theorem 1 is provided in the Appenélix.

THEOREM 1. Consider testing the null hypothegis : 5 = 0 in regression model (1).
a) Denote byd! andt% the OLS estimate aof, and thet-statistic for testingd, respectively, when
bothy andz follow an 7(1) process. Then &6 — oo,

B (Shy — 90S,) (Spp — 52) 7

T2 3 (Shy — S,8,) (S1)
b) Denote by)? and¢? the OLS estimate of, and thet-statistic for testingy, respectively, when
bothy andz follow an (1) plus drift process. Then & — oo,

52 2

T2 3 i, (1255) 2
¢) Denote by53 andtg the OLS estimate af, and thef-statistic for testingH,, respectively, when
bothy andx follow an 7(2) process. Then &6 — oo,

5 5 2188y

T2 B S8,
d) Denote by* andtg the OLS estimate aof, and thet-statistic for testingd,, respectively, when

x; is generated by ah(2) process, and, is generated by &'7(2, 1) process, as iDGP 5. Then
asT — oo,

5 B BaSu (f W)

“Resullts for the cas€(1, 1) are well known (Stock, 1987) and therefore are not reporégd.h

SResults in parts), b), andc) of Theorem 1 confirm and extend results in Noriega and VerSasaauhria (2007)
(some of which had already been obtained in Phillips (19B&yk and Phillips (1989), Marmol (1995) and Entorf
(1997)), as NVS only derived the order in probability of thetatistic, and not the corresponding asymptotic distribu
tion, as is done in Theorem 1.
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whereS., S.2, Sy, St., andS; for i = 1,2...,5, are functions of Wiener processes defined in
Appendix A.3.

As can be seen in Theorem 1, the slope parameter does notgertedts true value of zero
for the first three combinations @G Ps. To confirm the spurious nature of the relationship, note
that thet-statistic diverges in all cases, thus indicating that thk mypothesis of no relationship
will be rejected in large samples. Tli&/(2, 1) case of partl shows that the estimate does not
converge to its true valug,, and its associatedratio diverges at rat&€'/2. Furthermore, note that
when variables follonDGP 2 (I(1) + drift), typically the leading case in macroeconomics, the
normalized asymptotic distribution is not pivotal: it deps on the deterministic drift parameters.
Hence, even after using an appropriate rescaling, inferennot possible in this case due to the
presence of nuisance parameters.

4 A simple test for spurious regression

Results from last section make clear that for the case of aawtiprocess with drift, even knowing
the scaling factor needed for the statistic to achieve a#efihed limit, the corresponding asymp-
totic distribution is not pivotal (not nuisance-paramdtee). We propose below a simple method
which filters out the nuisance parameters, thus allowingn@sgtic inference.

The procedure starts by linearly detrending each varidisleugh the following OLS regres-
sion:

z=c,+bt+e, t=12..T. (2)
for z = x,y. Residuals are defined as:

Ex =24 —Cy — th;
which are used to estimate the following equation

éyt == Cf—Fﬁféxt—i-l/t. (3)

As can be seen, equation (3) uses generated variablesuabsabtained from a first round of
estimation. Pagan (1984) shows that when regressors &ilaatsfrom another model, a two-step
regression estimator will be consistent and efficient, aradid inferences can be made with the



standard errors provided as output from a second stagességmé (p. 242f Additionally, as
proven by Frisch and Waugh (1933), identical results fordsgmation of3; and itst-statistic
from (3) would be obtained if instead regression model (13 wsed with an additional time trend
term/

The next theorem provides the asymptotic theory relatech¢oQLS estimatouﬁ’f, and a
rescaled version of its associatedtatistic,T‘l/gtgf, which we callr, in equation (3). It also
reports the asymptotic behavior of ti@ statistic. Note from Theorem 2 that paasndb (c and
d) refertol(1) (/(2)) processes. The proof is outlined in the Appendix.

THEOREM 2. Consider testing the null hypothesis : 3, = 0 in regression model (3). The
asymptotic behavioufl — o) of the OLS estimatop;, its associated™'/?-rescaled-statistic,
7, and theR? statistic is as follows:

a) Whenuz, is generated by ah(1) or ani(1) + drift process, ang; is generated by@i(1,1)
process, as WGP 4:
Br 5 By
T = 0,(T"?)
(1 - RQ) = Op (T_l)
b) Whenz, andy, are independent from each other and generatddbyor /(1)+dri ft processes:
Bf = Op(1>
T B ND/?
(1-R?)=0,(1)
c) Whenz, is generated by ah(2) process, ang; is generated by &7(2, 1) process, as ibG P
S:
Bf = B2
7= 0y(T)
(1= R?) =0, (1)
d) Whenz,; andy, are independent and generated/y) processes:
By % (04/02)Q5Qs
5 Q:Q5 "
(1-R%)=0,(1)

®Note however, that this result concerns estimators fromessgon models in which only the regressor is a gener-
ated variable.
’See also Lovell (2008) or Greene (1997, pp. 246-247).



e) Whenz;, is generated by an(1) + drift process, ang, is generated &'orr(1) process, as in
DGP 6:

Bf 2> Q1/0:Q
r 2 Ql(—UiQ:s)_l/Q

(1-R*)=0,(1)

whereN, D, andQ); fori = 1,2, ..., 6 are functions of Wiener processes defined in Appendix A.4.

Theorem 2 provides useful results. First, the estimategespmrameter in the detrended re-
gression model (3) converges to the cointegrating paranoséteodel 4 in the Assumptions,,
when variables cointegrate, as shown in @aimplying that the cointegrating parameter will be
consistently estimated from regression modef(Burthermore, under cointegration, the rescaled
t-statistic diverges, correctly indicating a long-run telaship, as shown also in paxt Second, as
shown in parb, the rescaled-statistic does not diverge for independent integratedgsses, thus
avoiding the (asymptotic) spurious regression problenmmthieumore, the-statistic converges to a
pivotal limiting distribution. Note that this holds true thior without a drift in theDG P. Similar
conclusions can be reached fb2) processes, as shown in pactendd. Parte indicates that
when variables are correlated but not cointegrated, thdéssno power, since does not diverge;
instead, it converges to a non-pivotal distribution. Hinalote that the?? converges in probability
to one, only when there is cointegration among the variables

Summing up, the-statistic will diverge only when there is a long-run compation relationship
between the variables; otherwise it will not grow with thenpée size.

Based on the preceding results, we propose a simple test \ahasirs to distinguish a true
linear relationship among two integrated random variglftesn a spurious one. The test is based
on 7, the T'/2-rescaledt-statistic of 3; in regression model (3) for testing the null hypothesis
Hy : By = 0. Under the null, the filtered variables are asymptoticatfigarly independent. A true
relationship occurs when the null is rejected.

For the case when the variables are independent and follpwanbination off (1) and(1) +
drift processes, the resulting formulae (Theorem 2, Ipashow that the asymptotic distribution
is pivotal, i.e. free of nuisance parameters. This impled the above procedure allows inference
by means of an appropriately rescaled pivotal statistigselhdistribution can be tabulated.

We simulated the limit expression forin Theorem 2 (partb andd) and generate asymptotic
critical values, which we report in Table 2 in the row inde@iby the symbaobo.®

8Nelson and Kang (1981) argue that the dynamics of econcrmatiilels estimated from inappropriately detrended
integrated variables, may be an artifact of the trend reiaeredure. Note that this phenomenon does not seem to
affect the consistency with which the slope parameter imestd, as shown in paréd andc) of Theorem 2.

9The number of replications iK), 000 and the simulation of the Brownian motions follows Perro®g@, p. 375).



Table 2
CRITICAL VALUES FOR THE {-STATISTICS

7 [case I(1)-1(1) with or without drift] T [case 1(2)-1(2)]
T 1% 5% 10% 20% | 1% 5% 10% 20%
25 +1.28 +0.92 +0.76 +0.57| £5.47 +3.49 +2.70 +1.92
50 +1.28 +0.92 +0.76 +0.58| +£5.95 +3.67 +2.82 +2.00
100 | +£1.28 +0.92 +0.76 +0.58| +£5.87 +3.73 +2.86 +2.01
200 | +£1.28 4+0.92 +0.76 +0.58| +5.90 +3.74 +2.85 +2.03
500 | +1.28 +0.92 +0.76 +0.58| +5.95 +3.74 +2.85 +2.03
1,000| +£1.28 +0.93 +0.76 +0.58| +6.04 +3.78 +£2.90 +2.04
00 +1.29 +0.93 +0.76 +0.58| +£6.04 +3.79 +2.92 +2.06

Table 2 also reports critical values based on simulatedfdatsamplesl” = 25, 50, 100, 200,
500, 1000. The left part of Table 2 shows critical values for the (nolieeal) ¢-statistic,r, for the
case 1(1)-1(1) (whether the variables have a drift or not)jlevthe right part shows critical values
for the case 1(2)-1(2), also based on Theorem 2 (partlt is worth noting the closeness of the
asymptotic and finite sample critical values.

As a guide on the use of critical values in Table 2, assumeuthiaitoot tests (such as Dickey-
Fuller, or Ng-Perron tests) have led the researcher to thelesion that botly andx are/(1), with
a sample size df' = 100. The use ofr, together with critical values provided in Table 2, allows t
test for a relationship between these two integrated vimsal? (low) value of the statistic which
does not reject the null (lower than, sa@y)2, the critical value at the 5% level), will indicate that
the variables are two independent random walks. On the b#ned, a large value of the statistic
(larger than 0.92) will be indicative of the variables beaayntegrated.

Figure 1 plots the asymptotic distribution offor the 1(1)+drift case (left panel) and for the
1(2) case (right panel) under the null hypothesis. Cleadyhiof the distributions display a marked
departure from normality.

4.1 Some extensions

We have also examined the case of spurious regression betweelrend-StationaryI(S) pro-

cesses (see Kim, Lee and Newbold, 2004) as well as comhisadimond/’S and(d) processes,
for d = 1,2. Results indicate thet%f converges to a standard normal distribution under the null
hypothesis when innovations in thieG P for both dependent and explanatory variablesiate
However, when the innovations are autocorrelated, thd limstribution ofth under the null is

A Matlab code is available from the authors upon request.



Figure 1
ASYMPTOTIC DISTRIBUTION OF THET-STATISTICS

() (b)
1.0 T T T 1 T T

0.8f b 0.8f

0.6f 1 0.6F

0.4 1 0.4 ”

0.2t 0.2}

Panel (a):7 [I(1)+drift-1(1)+drift case]; Panel (b)r [I(2)-1(2) case].c? = 1 for z = x,y; T = 1,000, R = 10, 000.
A standard normal distribution (dash-dotted curve) is diepi for comparison.

not nuisance-parameter-free. These results, which dirpreiminary and out of the scope of the
present paper, will be reported elsewhere.

5 Finite Sample Properties

5.1 Size and power of ther test

We computed rejection rates of the proposestatistics for testing the null hypothedis : 5; =0

in equation (3), using critical values from Table 2 with a 5&mnal level. Rejection rates were
computed on simulated data for samples of §ize 50, 100, 200, 300 and500, using the models
in the Assumption, and0, 000 replications.

Table 3 shows rejection rates of thdest for different combinations of parameter values, as-
sumingz,; andy; have been generated as independént processes (Pana), or as cointegrated
processes (Panb). In order to study the effect on size and power of autocatieh in the pro-
cesses’ disturbances,, we allowu,; = p,u._1 + 1., for p, = 0.0,0.5 with z = y, z, and
n ~ #dN(0,1).1% As can be seen, size tends to be conservative a@t@ssl parameter values
(with the exception of” = 50 andp, = p, = 0.5, in which case size is 0.07). Turning to Panel
b in Table 3, we find that power is generally high, except for glas sizes smaller thdh = 200
and small parameter values.

1%We assume = o2 = 1 in all simulations.
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Table 3
REJECTION RATES OF THE TEST STATISTICS.

Panel (a)
Relationship Parameters Sample Size

e Ly Byt Pui  Pyd 50 100 200 300 500
- 0.00 0.00 0.02 002 0.02 0.03 0.02
0 0.00 0.00 - 050 050 0.07 0.04 0.04 0.03 0.03
o 0.30 - 0.00 000 0.02 003 0.02 0.02 0.02
O] ' - 050 050 0.07 005 0.04 0.03 0.03
Qa 0.50 125 - 0.00 0.00 0.02 0.02 0.02 0.02 0.02
e ' ' - 050 050 0.07 0.04 0.04 0.03 0.03
% 150 - 0.00 000 0.02 002 0.02 002 0.02
c ' - 050 050 0.07 0.05 0.04 0.03 0.03
8_ 0.30 - 0.00 000 0.02 002 0.03 0.03 0.02
%) ‘ - 050 050 0.07 0.05 0.03 0.03 0.03
g 150 0.50 - 0.00 0.00 0.02 002 0.02 0.02 0.02
= ‘ ' - 050 050 0.07 0.04 0.03 0.03 0.03
125 - 0.00 000 0.03 002 0.03 002 0.03
' - 050 050 0.07 0.04 0.03 0.03 0.03

Panel (b)
L ay Byt Pl Pyi 50 100 200 300 500
0.00 000 001 010 041 065 0091
0.00 0.30 0.30 050 050 0.03 062 092 099 1.00
0.30 0.00 000 002 010 040 065 0091
S ' 050 050 0.28 0.61 093 099 1.00
9 0.50 0.00 000 024 062 094 099 1.00
@© ' 050 050 074 096 1.00 1.00 1.00
8 1.25 0.00 000 099 100 1.00 1.00 1.00
= 0.30 0.50 ’ 050 050 1.00 1.00 1.00 1.00 1.00
% ' ' 1.50 0.00 000 100 1.00 1.00 1.00 1.00
O ' 050 050 1.00 1.00 1.00 1.00 1.00
175 0.00 000 100 1.00 1.00 1.00 1.00
| 050 050 1.00 1.00 1.00 1.00 1.00
200 0.00 000 100 1.00 1.00 1.00 1.00

0.50 0.50 1.00 1.00 1.00 1.00 1.00

Panel (a):x; andy, independently generated by DGP (2); panel (b):andy; generated by DGP (2), and (4),
respectively ¢,y ~ CI(1,1)).

Table 4 shows size and power results under the assumptibwatiables are generated by an
I(2) process. Pana shows that the test has the correct size for all parameteesand sample
sizes. Pandb corresponds to the case when the variables cointegratemasway that a linear
combination of the twd (2) variables is/ (1), that is, variables ar€7(2, 1). As can be seen, power
is generally very high!

Note that our proposed test is based on prior statisticar@mice used to determine whether
there is a unit root or not in each variable. Since this ps#irig may induce size distortions, we
applied a Bonferroni correction. Additional Monte Carlo esipeents were carried out where the
test depends on inference drawn from Dickey-Fuller tegidiegbto the individual series. Results

Hwe also studied the power of the test assuming variableg(@jyeand C'1(2,2), that is, a linear combination of
two I(2) variables is/ (0). Again, power is generally high.
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Table 4
REJECTION RATES OFr.

Panel (a)
Relationship Parameters Sample Size

o2, an, B2 Pe1 Pya 50 100 200 300 500
" 0.30 - 0.00 000 0.05 0.05 0.05 0.05 0.05
o - 050 050 0.06 0.06 0.04 0.06 0.05
O] 0.50 1925 - 0.00 000 0.04 0.04 005 0.05 0.05
Q ' ' - 050 050 0.05 005 0.05 0.05 0.04
I 150 - 0.00 000 0.05 005 0.05 0.05 0.04
) ' - 050 050 0.06 0.05 0.05 0.05 0.05
-8 0.30 - 0.00 000 0.05 0.05 0.05 0.05 0.06
0] ' - 050 050 0.06 0.05 0.05 0.05 0.05
% 150 0.50 - 0.00 000 0.05 0.05 0.05 0.05 0.05
T ' ' - 050 050 0.06 0.05 0.04 0.04 0.05
£ 195 - 0.00 000 0.05 0.05 0.05 0.05 0.05
' - 050 050 0.06 0.05 0.05 0.05 0.06

Panel (b)
o2, s, By Pu1 Pyi 50 100 200 300 500
0.30 0.00 000 032 0.68 0.92 0.98 0.99
' 0.50 050 042 0.72 094 0.98 0.99
0.50 0.00 000 0.58 0.88 0.98 0.99 0.99
o) ' 050 050 0.66 0.90 0.99 0.99 1.00
Q 125 0.00 000 0.93 099 100 1.00 1.00
® 100 100 ' 050 050 0.95 0.99 100 1.00 1.00
8 ' ' 150 0.00 000 0.96 099 100 1.00 1.00
et ' 0.50 050 0.97 099 100 1.00 1.00
g 175 0.00 000 0.98 099 100 1.00 1.00
O ' 050 050 0.98 099 100 1.00 1.00
200 0.00 000 0.99 099 100 1.00 1.00

0.50 050 0.99 0.99 100 1.00 1.00

Panel (a):xz; andy, independently generated by DGP (3); panel (b):andy; generated by DGP (3), and (5),
respectively ¢;, y. ~ CI1(2,1)).

(not reported but available from the authors upon reques8al that a Bonferroni correction does
not seem to be necessary, as the size properties of thedastanly identical to the ones reported
in Tables 3 and 4.

5.2 Spurious regression and cointegration

We have shown that the proposed test has power for distimggismong independent and coin-
tegrated processes. In order to investigate this issue ne wepth, we designed a Monte Carlo
experiment, through which we compare the small sample paence of ourr statistic with
that of standard cointegration tests, such as the resigsadotest of Engle and Granger (1987),
and the Johansen (1988) test. For this experiment, we gedet,000 samples of sizds =

50, 100, 200, 300, and500 of integrated processes (with drift) foy andx;, under two hypotheses:
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the variables are independent of each other, and the vesi@bintegrate. We then calculate the
proportion of times the null hypothesig, : 5; = 0 in regression model (3) is rejected at the
nominal size of 5%, out of 10,000 replications, under eagiottyesis.

As can be seen from column 3 in Table 5, thiest does a very good job in discerning indepen-
dent processes from cointegrated ones: under the hypstbegidependence, the rejection rate
equals nominal size (5%), while power is nearly 80%, withragla as small as fifty observations.
In the Table, EG, Tr and Eig stand for the Engle-Granger (1883t the trace test of Johansen
(1988), and the eigenvalue test of Johansen (1988), regglgciNote that the performance of the
four tests is very similar for sample sizes above 100 obsena When innovations_; in the
DGP are correlated, column 4 of Table 5 shows some size distar{jthe rejection rate reaches
10% forT = 50) and lower power (52%). Note, however, that these problemckty disappear
as the sample size grows.

Table 5
REJECTION RATES OF THEr, ENGLE-GRANGER, AND JOHANSEN TESTS
T 7 EG EG Tr. Tr¢ Eig. Eig®
T Case

1 lag; no det. part
I 0.05 0.10 0.05 0.02 0.07 0.09 0.07 0.09
Cl 0.78 0.52 1.00 0.33 0.99 0.28 0.99 0.26
I 0.05 0.09 0.05 0.02 0.06 0.07 0.06 0.07

50

100 Cl 098 0.77 1.00 089 1.00 0.77 1.00 0.78
200 I 0.05 0.07 0.05 0.02 0.06 0.06 0.06 0.06
Cl 099 096 1.00 099 1.00 0.99 1.00 0.99
300 I 0.05 0.06 0.04 0.02 0.07 0.06 0.06 0.06
Cl 1.00 099 100 1.00 1.00 1.00 1.00 1.00
500 I 0.05 0.06 0.05 0.02 0.08 0.06 0.07 0.06

Cl 1.00 099 1.00 1.00 1.00 1.00 1.00 1.00

EG: Engle-Granger test; Tr/Eig: Johansen’s Trace and E#ajee tests; Innovations follow a stationaryl R(1)
processu,; = 0.75uz¢—1 + €54; €2 ~ N(0,1); p = 0.03, p,y = 0.04, 3, = 0.7 (for cointegrated relationships), and
R =1,000.

Hence, ther test could be used not only to distinguish a genuine relakignfrom a spurious
one, but also to distinguish independent from cointegratedesses. There may be gains from
using ther test as a cointegration test, given its relative simplicay the one hand, the Engle-
Granger test must control for autocorrelation by means ghantation terms; on the other, the
Johansen test requires the specification of the initial VA&RIeh, as well as decisions regarding the
inclusion of deterministic components.

Overall, we believe that the practitioner could benefit frapplying both tests, given their
different nature: the EG procedure is based on the propestithe residuals whilst ours is based
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on the parameter estimate. If both tests find evidence of aigemelationship, the practitioner
should be more confident about the validity of such infere@ethe contrary, if the results of the
tests are incompatible, then the practitioner could canrghis as evidence of potential misleading
inference and should therefore revise the empirical ezercihe use of the statistic could be
therefore considered as a companion test in a cointegrahatysis, capable of confirming the
inference drawn from other tests or to cast doubts aboualidity.

To illustrate these arguments, we performed an additior@it®! Carlo experiment. We gen-
erated 10,000 samples of two independ&nit processes of sizes reported in the first column on
Table 6, in order to study the joint behaviour of théest and the EG one. Because the processes
are generated independently of each other, we expect thegsts do not reject their null hypothe-
ses, namely, no relationship, and no cointegration, reéspéc To verify this, we counted the
percentage of times this occurs, and present these pegesntacolumn 2 of Table 6. At a nomi-
nal level of 5%, and assuming the tests are independent, ovddsbxpect to get something close
to the following probability:

Pr(7 does not rejectl, N EG does not rejectl, | Hy is true) = (1 —a)? = (0.95)% = 0.9025

Table 6

TYPE-l ERRORREJECTION RATES OF THEr AND EG TESTS _
T Both accept Onlyr accepts Only EG accepts Both reject

50 0.9061 0.0478 0.0418 0.0043
100 0.9110 0.0446 0.0405 0.0039
150 0.9047 0.0420 0.0479 0.0054
200 0.9065 0.0446 0.0441 0.0048
300 0.9048 0.0419 0.0480 0.0053
500 0.9072 0.0438 0.0431 0.0059

1,000 0.9058 0.0424 0.0473 0.0045

Level of the testsae = 0.05. Innovations are- #idN (0, 1); p, = 0.03, y,, = 0.04, andR = 10, 000.

As can be seen from the values reported in column 2 in Tableséeims the tests are indeed
independent.Columns 3 and 4 in Table 6 report estimates dbllogving probability:

Pr(one test does not rejeéf, N the other one does rejet | Hyistrug = (1 — a)a
= (0.95)0.05
= 0.0475

From the reported values, we can conclude that at least otiee @ésts does not reject the (true)
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null is around 95% (calculated as the sum of columns 2 and 2,ard 4). Finally, column 5
estimates the following probability:

Pr(7 rejectsH, N EG rejectsH, | Hy is true) = o = 0.0025

which means that it is very unlikely that both tests get thengroutcome of rejecting the true null.

Turning to power issues, we present Monte Carlo experimbatsailow the presence of auto-
correlation in the innovations: in Table 7 innovationsdallan AR(1) process with autoregressive
parameter equal t@.75. In this case, the EG test must include one lag of the depéndeanble as
an additional regressor in the auxiliary regression. Weiohed such a lag in the EG test and com-
pare the rejection rates of the joint application of thtest and the EG one. From Table 7, which is
constructed under the alternative hypothesis of cointegravhen the practitioner runs both tests
with a sample of siz& = 100, there is a 93% chance of rejecting the null with at least dribe
tests (0.613+0.148+0.167), which is better than 76%0 (613 +0.148), or 78% (.613+0.167), the
chances of rejecting the null using only thatatistic, or the EG test. It appears that, for relatively
small samples (below 100 observations), the applicatidootf tests ensures higher power. Hence,
there seems to be potential benefits in the use of both testéesaoh of only one.

Table 7

TYPE-II ERRORREJECTION RATES OF THEr AND EG TESTS
T Both reject Onlyr rejects Only EG rejects Both accept

50 0.1662 0.3593 0.0977 0.3768
100 0.6131 0.1480 0.1665 0.0724
150 0.8911 0.0116 0.0951 0.0022
200 0.9627 0.0001 0.0372 0.0000
300 0.9952 0.0000 0.0048 0.0000
500 1.0000 0.0000 0.0000 0.0000

1,000 1.0000 0.0000 0.0000 0.0000

Level of the testsia = 0.05. Innovations are~ AR(1) with p = 0.75; p, = 0.03, p, = 0.04, 8, = 0.7 (for
cointegrated relationship), ail= 10, 000.

6 Empirical illustrations

In a frequently cited but insufficiently read paper (as Gean@001), p.557 argues), Yule (1926)
first discussed the nonsense correlations that can be fdagtd/éen quantities varying with the
time, to which we cannot attach any physical significancetens,. .. ”(p. 2). He illustrated this

using annual data for the years 1866-1911 on the proporfi@morch of England marriages to all
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marriages (per 1,000 persons) and the mortality rate (8&0lpersons) in England and Wales.

Yule (1926) found a correlation coefficient between thesevariables 00.9512, and argued
that even though it could be possible that the spread of ttethinking and the progress of
science might be behind the fall in marriages and mortal@gpectively, and hence a common
factor influences both series, it is nevertheless clear‘thatcorrelation is simply sheer nonsense;
that it has no meaning whatever; that it is absurd to supgwddhe two variables in question are
in any sort of way, however indirect, causally related to anether” (p.2).

The purpose of this section is twofold. First, we use reahdatillustrate the possibility of
finding spurious statistical relationships between vadeskvhich, ora priori grounds, should bear
no relationship to each other. The variables we study aréotlusving:

1. Annual data (1866-1911) on the proportion of Church of Bndlmarriages to all marriages
(per 1,000 persons) in England and Walear(iages, henceforth)-?

2. Annual data (1866-1911) on the mortality rate (per 1,00s@ns) in England and Wales
(mortality, henceforth):3

3. Monthly data (1991:1-2005:12) on total number of vehigddes in the USadars hence-
forth).14

4. Monthly data (1991:1-2005:12) on number of murders indBe(murders henceforth):>
5. Monthly data (1991:1-2005:12) of the inflation rate in Bréinfbrazl, henceforth)®

6. Monthly data (1991:1-2005:12) on cash in vault of comnam@nd development banks in
Mexico (BCbanks, henceforth).’

Second, after showing that the usual OLS regression tegbgimdicate the presence of linear
(spurious) relationships between combinations of thealsdes, we show that, once our proposed
procedure is implemented, the statistical relationshipslees, leading to what we believe should
be, on a priori grounds, correct inference.

?Data  for  Church marriages  are from Office for National Statistics, U.K.
(http://www.statistics.gov.uk/cci/nscl.asp?ID=7537)

3pata for themortality rate series come from Mitchell (1988).

14The source is Bureau of Economic Analysis: Auto and Trucle§aProduction, Exports and Inventories (thou-
sands), from www.FreeLunch.com - http://www.economy.foglunch. The sample period (1991:1-2005:12) com-
prises 180 observations.

15The source is FBI: Crime in the United States; BOC: County Cata Book, from www.FreeLunch.com -
http://www.economy.com/freelunch.

16Calculated as the percentage change in the consumer pdeg. irCentral Bank of Brazil (Banco Central do
Brasil). https://www3.bcb.gov.br/sgspub/localizarssfiocalizarSeries.do?method=prepararTelaLoc8zaes

"Thousands of Pesos, nominal stocks. The source is Bank ofichlexBanco de Mxico).
http://lwww.banxico.org.mx/sitioingles/billetesymatees/estadisticas/banknotescoins/banknotescoinsinisim
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We start our empirical investigation by uncovering the ofantegration of the variables. As
a first step, we follow Dickey and Pantula (1987), who obsgmmpirically that the probability
of rejecting the null hypothesis of one unit root (denot&d against the alternative of stationarity
(Hy) increases with the number of unit roots present. In ordevercome this possibility, we
use the methodology suggested by Pantula (1989), whichstsmd an asymptotically consistent
sequential procedure for testing the null hypothésis exactlyr unit roots, against the alternative
H,_y : exactly (r — 1) unit roots, withr = m,...,d + 1,d, wherem is an assumed maximum
number of unit roots present in the data, ahthe true number of unit roots present in the data.
Pantula suggests that the hypotheses must be tested sebyémthe orderH,,, H,,_1, ..., H,.
We assume that it is known a priori that the maximum possibtelyer of unit roots present in the
data is 2. Based on Pantula’s results, we perform unit rotd tEsvnwards, starting with a test of
the null hypothesigi,: exactly two unit roots (or a unit root in the first differersoef the data). If
the null 1 is rejected, then we test the nél : one unit root, against the alternative of stationarity,
otherwise, we infer there are two unit roots in the series.

This procedure is implemented by using seven tests: the gatgd Dickey-Fuller unit root
test (see Said and Dickey (1984)), the KPSS stationaritiftesee Kwiatkowski, et.al (1992)), the
ERS point optimal unit root test (see Elliott, et.al. (199&)y the four unit root tests with good
size and power properties of Ng-Perron (see Ng and Perrd@1jR0rable 8 summarizes the time
series properties of the variables.

As can be deducted from this Table, most variables seemltwfal unit root process, with the
exceptions ofmurders, which seems to be afn(2) process, andnarriages which is described as
I(1) by some tests, af(2) by others. Inference from the various tests is summarizdalte 9.

Using several combinations of these integrated seriesxami@e regression results under two
approaches: simple linear ordinary least squares on (&)t procedure proposed in section
4, which uses = T*l/Qtﬁf from OLS estimation of equation (3) as the test statistichldd.0
collects the results.

18In the case of th&PSS stationarity test, we start by testing the nbl] againstHy, that is, the null of stationarity
in the first differences of the data, against the alternatfui®vo unit roots. If the nullH; is rejected, then we stop and
conclude that the series has two unit roots. If the null isrected, we proceed to test the null of stationadify,
against the alternative of a unit rodf;; .
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Table 8

RESULTS OF THEUNIT ROOT TESTS

Series ADF KPSS ERS Ng-Perron

MZa MZt MSB MPT
Amarriage -2.03 0.83*** 3.61* -5.68 -1.67* 0.29 4.36*
marriage — — 15.10 — -1.60 — 16.11
Amortality -9.48***  0.02 3.30* -14.91%*  -2.61*** 0.17** 2.11*
mortality -1.19 0.43*** 12.02 -7.49 -1.93 0.26 12.16
Acars -19.41** 0.013 0.48**  -122.74*** -7.80*** 0.06*** 0.25***
cars -1.40 75.90***  319.00 -0.15 -0.20 1.35 338.37
Amurders  -0.81 147.42*** 38.05 -1.07 -0.72 0.68 22.69
murders S e e e e e S
Alnfbrazil -12.92*** 0.048 0.28***  -149.93*** -8.66*** 0.06*** 0.16***
Infbrazil -2.48 11.86*** 7.68 -11.93 -2.42 0.20 7.75
ABCbanks -19.12** 0.01 0.342** -122.39*** -7.81*** 0.06*** 0.22***
BCbanks 0.22 119.45*** 132.67 -1.77 -0.93 0.53 50.86

*** **and * denote significance at the 1%, 5% and 10% levels, respebti

T The statistics reported are those which estimate the residual spectrumuetrfog zero by OLS

(using OLS-detrended methods does not change the results).
We let the maximum value of lag length/at,., = int(12(7/100)'/*), see Ng and Perron (2001)
The lag length is selected by MBIC, MAIC and MHQ; except in the Ng-Retest where the lag is

selected like in Perron and Qu (2007).
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ORDER OF INTEGRATION FROM UNIT ROOT TESTS

Table 9

Series ADF KPSS ERS Ng-Perron
MZa MSB MPT
marriage 1(2) I I(1) I 1(2)
mortality  I(1) [ 1) 1 I(1)
cars I I I I I(1)
murders — 1(2) I 12 I 1(2)
Infbrazil I1(1) [ I(1) I I(1)
BCbanks I(1) I I(1) I I(1)
Table 10
Yt Ty t; T
mortality marriages 23.542%** 0.477
cars Infbrazil -6.390*** -0.062
cars BCbanks 10.108*** -0.006
Infbrazil BCbanks -11.258*** -0.118
mortality Amarriages 0.688 0.010
cars Amurders — 2.047** -0.068
Infbrazil  Amurders -0.393 0.258
BCbanks — Amurders — 4.424*%%* 0.063

*** ** and * denote significance at the 1%, 5% and 10% levels, respebti
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Results from Table 10 indicate that, in almost all cases, l&@®h.S regression among appar-
ently independent variables will result in rejection of tidl of no relationship, leading one to
conclude in favour of spurious relationships. The casea@ftality on Amarriages suggests that
marriages is indeedl (1), not(2). If this was the case, the application of the difference atwer
would eliminate the stochastic trend in this variable, Nenarriages ~ 1(0). As shown in Nor-
iega and Ventosa-Santauia (2007), the-statistic does not diverge when one of the variables is
trendless. Hence, in this case we conclude that standarceirde through; in regression model
(1) for these variables would indicate a spurious rejeabiotine null.

The last column of Table 10 shows that the proposed proceadicates, as one would expect,
that the variables are not statistically related, sincertbatistic is not significant at conventional
levels, using critical values from the left panel of Table 2.



7 Conclusions

This paper has proposed a simple procedure to overcome th®$p regression problem in a
simple linear regression model when the variables are riated processes. We study two cases,
one in which both dependent and explanatory variables tegristed processes of order one (with
and without drift), the leading case in many empirical stsdn macroeconomics, and one in which
the variables are integrated of order two.

In the context of a simple linear regression model, it is Wathwn that, when both dependent
and explanatory variables follow aki{1) plus drift process, theé-statistic of the slope parame-
ter diverges, while the corresponding rescaled statistiverges to a well defined distribution,
expressed in terms of Wiener processes, but dependent sancei parameters (the drift param-
eters). We introduce a simple approach based on lineaiirfitef the data, which results in a
t-statistic with a well defined asymptotic distribution freenuisance parameters. We tabulated
both the asymptotic distribution of this statistic and itsté sample counterpart, and report critical
values for various samples sizes and significance levels.

The asymptotic theory behind our proposed procedure i@, when variables cointegrate,
the test will reject the null of no correlation. On the othant, when variables are independent,
then the test will not reject asymptotically. A small MonterlBaexperiment reveals that our
proposed test statistic does a very good job in discernidgdandent from cointegrated variables
and could be therefore considered as a “companion test” ainsgration analysis.

Finally, we applied the proposed procedure to the famous Y18#26) data set on marriages
and mortality rates, and found that under our method we ngdofind a (spurious) significant
relationship between these two variables. Some additiemgdirical exercises confirm that our
procedure seems to work in practice.
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APPENDIX A.1

Equation (1) can be written in matrix formm = X3 + ¢, with y aT x 1 vector ofy, data,
X aT x 2 matrix comprising a constant term and datazgnands a7’ x 1 vector of zero mean
disturbances. The vector 6fLS estimators is defined as:

) Q)

A= [ A] = (X'X)7' X'y,

where (all sums run from = 1to7T) X'X =

T X h
U and Xy = Yol The
Eﬂft Zﬂf%

t-statistic is defined by

t; =0 [02(X'X)5] %,

whereo? is the estimated regression variance,

~2 Xy —a — /5\$t)2

o, T

and(X'X),, denotes the"® diagonal element of X’ X)~'. With the aid of aMathematica 7.0
code, for each combination of DGPs in the Assumptionif@nd z, we compute the order of
magnitude o8, 02, and(X'X),,, and therefore we derive the order of magnitude;ofrhe code
also allows us to derive the expression for the asymptosiridution oft;. This code is available
at http://dl.dropbox.com/u/1307356/ SoReg Test/ NVSSoRegTest1.zip

APPENDIX A.2

As in Appendix A.1, Equation (2) can be written in matrix foem= X3 + ¢, with zaT x 1
vector of dataf; = vy, x;), X a1 x 2 matrix comprising a constant term and a linear trerehd
e aT x 1 vector of zero mean disturbances. The vectapafS estimators is defined as:

B: [/z\z ] _ (X/X)—lxlz’

T >t by i : : :
whereX’'X = ,andX’'z = “ | With the aid of aMathematica 7.0 code avail-
Nt Xt? Yzt

able at http://dl.dropbox.com/u/1307356/SpRegTest/NVSSpRegTest2.zip), we are able to compute
analytic expressions fcﬁ. The resulting residuals,, andé,, are then used to estimate by OLS
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regression model (3):
B = Sépnm (2€2,) 7

Note that in this cas&é¢,; = ¢; = 0, by construction. Thélathematica 7.0 code does the rest,
deriving a limiting expression foﬁf (and also a limiting expression fag,). The behaviour of
the R? is obtained by studying the asymptotics of the residual stisgoares and the total sum of
squares fronR? = 1 — RSS/T'SS, whereRSS = i} = To, andTSS = 3 &2, = T2 , both
of which can also be obtained from tMathematica 7.0 code.

APPENDIX A.3

The definitions for the expressions used in Theorem 1 ardlagv Forz = z,y :
S, =0, [W,, S =02 [W2 5, = 0,0, | W,W,, St, =0, [rW,,and
S1 = Sp2Sy2 — 4257 — 52257 +25:5,S4y — S, S
Sy = (12) 7" [12 A, + p2Ay + 241011, (12St,St, — 65t,S, — 65t,S, + 45,5, — 6S4,)]
Sa= [We [Wy— [ W, 8= (JWa)" ~ [ W,
S5 =2 [Wo [W, [WAV, = (JW.W,)" = [W.([W,) = ([W.)" [Wy+ [W, [T,
with A, = S.o — 4(35t2 — 35t,S. + 52), ando? = limy oo (T~ Y1, u2,).
APPENDIX A.4

The definitions for the expressions used in Theorem 2 arellag/fo
N=6[rW,([W,=2[rW,)+ [W,(6[rW,—4[W,)+ [W, W,

D=4 (fW,)* W —12(frW.)* [(JW,)* = [W2| 12 (J Wa)* (Jrwv,)”
12 W [ W [(J W) = 2 [ Wy [ Wy | s [ W24 (w0 + ) [ WaWyt (f W)’

Q1= ﬁyi&o'acwxl + oy [2(11)2 - wg) - f Wny}
Q=4 (fW,)" = [W2 =12 [+ W, (W, — [rIV,)

Qs =12 [ 1W, [2 [ Wo [ 1Wo [ Wy = [W2 [ Wy = (JW2)* [ Wy + [W2 [, ]
(W) [ W2 =12 ([ rWa)?| wan [ W2+ WL, (4w + ws) + [ W]

Qu=4(J W) =12 [ W, [rW,+12([rW,)" = [W.
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Qs =4 [W, [W,—6[rW, [W,—6[W, [rW,+12 [+W, [+W,— [W, W,

Qs = (JW.IW,) =4 (3 W." = [W2) (JTW,)* =12 (J W, =2 [ W, [+ IV.) [ W, [TV,
+12[(J W = ()] (J777,)" +Qu S 7,
A4 W W, (2 [ W, [Wy=3[rW, [W,=3[W, [rW,+6[rW, [rIV,)

wa =4 (W) =12 [ W, [rW. + 12 ([ rW.)* — [ W2

wy =3 [T Wy [Wy, =2 [W, [W,

ws =3 [W, [rW, =6 [rW, [rIV,
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