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Abstract

We consider the problem of cointegration rank estimation in the framework of fractional

Vector Error Correction Mechanism (FVECM). We describe and compare di¤erent methods

available up to date, namely four LR tests based on di¤erent assumptions on the model and a

new two-step procedure. In the new two-step procedure, the �rst step consists in estimation of

the FVECM under the null hypothesis of cointegration rank r = r0: This provides consistent

estimates of the cointegration degree d, cointegration vectors � and speed of the adjustment

to the equilibrium parameters � and also (super) consistent estimates of �?; orthogonal to

�; such that �0?Xt is not cointegrated in any direction. In the second step, taking �̂? as

given, we propose to implement the sup tests considered in ×asak (2010), that are based on the

p� r0 vector series �̂
0
?Xt; in this case reestimating d again. We analyse the performance of the

proposed new procedures in �nite samples and compare them with all the LR tests we discuss.

These include cases when the cointegration degree is unknown and estimated under the null or

under the alternative.

Further we propose a procedure to detect extra cointegrating relations with di¤erent mem-

ory, which can be seen as generalization of Johansen and Nielsen�s (2010b) test. This procedure

also uses the sup norm in the spirit of ×asak�s (2010) cointegration test.

Keywords: Error correction model, Gaussian VAR model, Maximum likelihood estimation,

Likelihood ratio tests, Fractional cointegration rank

JEL: C12, C15, C32.
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1 Introduction

Cointegration is commonly thought of as a stationary relation between nonstationary variables. It

has become a standard tool in econometrics since the seminal paper of Granger (1981). Following

the initial suggestion of Engle and Granger (1987), when the series of interest are I(1), testing for

cointegration in a single-equation framework can be conducted by means of residual based tests (cf.

Phillips and Ouliaris (1990)). Residual-based tests rely on initial regressions among the levels of

the relevant time series. They are designed to test the null of no cointegration by testing whether

there is a unit root in the residuals against the alternative that the regression errors are I(0).

Alternatively fully parametric inference on I(1)=I(0) cointegrated systems in the framework of

Error Correction Mechanism (ECM) representation has been developed by Johansen (1988, 1991,

1995). He suggests a maximum likelihood procedure based on reduced rank regressions. His method-

ology consists in identifying the number of cointegration vectors within the VAR by means of per-

forming a sequence of likelihood ratio tests. If the variables are cointegrated, after selecting the

rank, the cointegration vectors, the speed of adjustment to the equilibrium coe¢ cients and short-

run dynamics are estimated. So-called Johansen�s procedure can be preferred to the residual-based

approach because it provides a simple way of testing for the cointegration rank and making inference

on the parameters of complex cointegrated systems.

However the assumption that deviations from equilibrium are integrated of order zero is far too

restrictive. In a general set up, where errors with fractional degree of integration are allowed, it

is possible to permit the cointegration residuals to be integrated of order greater than zero. The

case of fractionally cointegrated processes has the same economic implications, i.e. exist long-

run equilibrium among variables, as when the processes are integer-valued cointegrated, except for

the slower rate of convergence to the equilibrium in the former situation. Since a standard setup

of I(1)=I(0) cointegrated systems ignores the fractional cointegration parameter, a fractionally

integrated equilibrium error will result in a misspeci�ed likelihood function.

There has been relatively few other work dedicated to inference on cointegration rank in frac-

tional systems. Breitung and Hassler (2002) suggest a new variant of e¢ cient score tests against

fractional alternatives for univariate time series that generalizes to multivariate cointegration tests.

It allows to determine the cointegration rank of fractionally integrated time series by solving a gen-

eralized eigenvalue problem of the type proposed by Johansen (1988). Robinson and Yajima (2002)

develop methods of investigating the existence and extent of cointegration in fractionally integrated

systems with stationary series, in semiparametric setting, with some discussion of extension to

nonstationarity.

Nielsen and Shimotsu (2007) propose to extend the cointegration rank determination procedure

of Robinson and Yajima (2002) to accommodate both (asymptotically) stationary and nonstation-

ary fractionally integrated processes as the common stochastic trends and cointegrating errors by

applying the exact local Whittle analysis of Shimotsu and Phillips (2005). The proposed method

estimates the cointegrating rank by examining the rank of the spectral density matrix of the d-th

di¤erenced process around the origin, where the fractional integration order d is estimated by the

exact local Whittle estimator. Their method does not require estimation of the cointegrating vec-

tor(s) and is easier to implement than regression-based approaches, but it only provides a consistent

estimate of the cointegration rank, and formal tests of the cointegration rank or levels of con�dence

are not available except for the special case of no cointegration.
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Chen and Hurvich (2003b) consider the semiparametric estimation of fractional cointegration in

a multivariate process of cointegrating rank r > 0. They estimate the cointegrating relationships

by the eigenvectors corresponding to the r smallest eigenvalues of an averaged periodogram matrix

of tapered, di¤erenced observations. They determine the rate of convergence of the r smallest

eigenvalues of the periodogram matrix and present a criterion that allows for consistent estimation

of r. Chen and Hurvich (2006) consider a common-components model for multivariate fractional

cointegration, in which di¤erent memory of components is allowed and the cointegrating rank may

exceed one. They decompose the true cointegrating vectors into orthogonal fractional cointegrating

subspaces and estimate each cointegrating subspace separately, using appropriate sets of eigenvectors

of an averaged periodogram matrix of tapered, di¤erenced observations, based on the �rstm Fourier

frequencies, with m �xed. They obtain a consistent and asymptotically normal estimate of the

memory parameter for the given cointegrating subspace and then they use these estimates to test

for fractional cointegration and to consistently identify the cointegrating subspaces.

Our approach in this paper is fully parametric instead, based on the speci�cation of a fractional

VECM. We analyse di¤erent procedures to estimate the cointegration rank of fractionally coin-

tegrated system. Note that in a fractional framework LR tests for cointegration rank loose their

straightforward asymptotic properties since we may obtain di¤erent estimates for cointegration de-

gree under the null and under the alternative. We propose to perform a sequence of tests based

on a new two stage procedure whose motivation comes from the results on cointegration testing in

×asak (2010) and estimation of fractionally cointegration systems in ×asak (2008). We also consider

applying sup tests proposed in ×asak (2010) in a naive way although the same asymptotic inference

may not be valid, since in case of testing the cointegration rank the cointegration degree parameter

is identi�ed both under the null and under the alternative. This method implies estimation of

cointegration degree under the alternative. Further we consider estimation of cointegration degree

under the null, which lead us to the construction of a LR test similar to Lyhagen�s (1998) trace test

in some sense. Further we consider LR tests based on the standard VECM that assumes that the

degree of cointegration is known and equal to one, like in Johansen (1988, 1991, 1995), as a bench-

mark case for comparison. Finally we propose a procedure to detect extra cointegrating relations

with di¤erent memory, which can be seen as generalization of Johansen and Nielsen�s (2010b) test.

This procedure also uses the sup norm in the spirit of ×asak�s (2010) cointegration test.

The rest of the paper is organized as follows. Section 2 describes ML analysis of fractional

system. Section 3 discusses the problem of testing for cointegration. Section 4 presents the problem

of rank testing in the fractional framework. Section 5 describes the new two-step procedure. In

section 6 we present rank testing in the model with short run dynamics. Section 7 discusses testing

procedure in case we have cointegrating relations with di¤erent memory. Section 8 presents results

of Monte Carlo analysis. Section 9 concludes. Appendix A contains the proof of the fact that

replacing �?by �̂? makes no di¤erence asymptotically in LR test statistics, which we use in our

analysis. Appendix B provides theoretical justi�cation of the procedure described in Section 7.

2 Analysis of the fractional system

As a �rst natural research step we consider the simplest version of the fractional VECM, model

without lagged di¤erences and deterministic terms, that is a special case of fractional representations
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proposed in Granger (1986), Johansen (2008, 2009) and Avarucci (2007),

��Xt = ��0(��d � 1)��Xt + "t; (1)

where Xt is a p� 1 vector of variables fractionally integrated of order � and
� = 1 � L; L being the lag operator. We assume there exist r linear combinations � of original

variables Xt that are of order � � d; where r is a cointegration rank, however r is unknown. � is

a p � r matrix of the speed of the adjustment to the equilibrium coe¢ cients, "t is a p � 1 vector
of Gaussian errors with variance-covariance matrix 
: Note that we assume the Gaussianity of the

errors only to de�ne the likelihood function.

We consider the case �0 = 1 to easy the notation and we set the true value of d to d0 2 (0:5; 1]
when r > 0. Note that when r > 1 then all cointegrating relationships have the same order of

integration, 1� d0. � could be estimated consistently if unknown, either from univariate ML from

components of Xt or by ML estimation under the null hypothesis of cointegration with rank r0 > 0:

In order to estimate parameters of the fractionally cointegrated system given by (1) we can follow

the procedure described in Johansen (1995), but adjusted for the case of fractional VECM that has

been already presented in ×asak (2010) and 3. Let�s de�ne Z0t = �Xt; Z1t(d) =
�
�1�d ��

�
Xt:

The model expressed in these variables becomes

Z0t = ��0Z1t(d) + "t; t = 1; :::; T:

The log-likelihood function apart from a constant for the model (1) is given by

L (�; �;
; d) = �1
2
T log j
j � 1

2

TX
t=1

[Z0t � ��0Z1t(d)]0
�1[Z0t � ��0Z1t(d)]:

De�ne as well

Sij(d) = T�1
TX
t=1

Zit(d)Zjt(d)
0 i; j = 0; 1;

and note that Sij do not depend on d when i = j = 0.

For �xed d and �; parameters � and 
 are estimated by regressing Z0t on �
0Z1t(d) and

�̂(�(d)) = S01(d)�(�
0S11(d)�)

�1 (2)

while


̂(�(d)) = S00 � S01(d)�(�0S11(d)�)�1�0S10(d) = S00 � �̂(�)(�0S11(d)�)�̂(�)0: (3)

Plugging these estimates into the likelihood we get

L�2=Tmax (�̂(�(d)); �; 
̂(�(d)); d) = L�2=Tmax (�; d) = jS00 � S01(d)�(�0S11(d)�)�1�0S10(d)j;

and �nally the maximum of the likelihood is obtained by solving the following eigenvalue problem

���(d)S11(d)� S10(d)S�100 S01(d)�� = 0 (4)
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for eigenvalues �i(d) and eigenvectors �i(d), for a given d; such that

�i(d)S11(d)�i(d) = S10(d)S
�1
00 S01(d)�i(d);

and �0j(d)S11(d)�i(d) = 1 if i = j and 0 otherwise. Note that the eigenvectors diagonalize the

matrix S10(d)S
�1
00 S01(d) since

�0j(d)S10(d)S
�1
00 S01(d)�i(d) = �i(d)

if i = j and 0 otherwise. Thus by simultaneously diagonalizing the matrices S11(d) and S10(d)S
�1
00 S01(d)

we can estimate the r�dimensional cointegrating space as the space spanned by the eigenvectors
corresponding to the r largest eigenvalues.

With this choice of � we can estimate d by maximizing the log-likelihood; i.e.

~d = argmax Lmax(d)
d2D

; (5)

where

Lmax(d) =

"
jS00j

rY
i=1

�
1� �̂i(d)

�#�T
2

(6)

and D � (0:5; 1]. We have solved the problem of testing whether the system (1) is cointegrated in

×asak (2010). Further we have analyzed the estimation of the system (1) in ×asak (2008) under the

assumption that the cointegration rank has been known already. In this paper we concentrate on

the problem how to establish the cointegration rank. We follow the methods developed in Johansen

(1988, 1991, 1995) of using the sequence of likelihood ratio tests to test the null hypothesisH0 : r = 1

�rst, then H0 : r = 2; till we cannot reject the null. We discuss the problem in details in the next

two sections.

3 Testing for cointegration

×asak (2010) have proposed two sup tests to test the null of no cointegration against two di¤erent

alternatives. Using sup trace we test the null hypothesis of no cointegration,

H0 : rank (�) = r0 = 0;

against the alternative of the full rank of the impact matrix �;

H1 : rank (�) = p:

Note that in case we reject the null hypothesis we only get the information that system is cointe-

grated, but we do not know how many cointegration relations has Xt. The LR statistic for testing

H0 against H1 is de�ned by

LRT (p) = trace(d̂p) = �2 ln [LR (0jp)] = �T
pX
i=1

ln[1� �̂i(d̂p)]; (7)
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where

d̂p = argmax
d2D

Lp(d) = argmax
d2D

trace(d)

and Lp denotes the likelihood under the hypothesis of rank p.

Alternatively we can use sup maximum eigenvalue test and test the null hypothesis of no coin-

tegration

H0 : rank (�) = r0 = 0;

against the alternative of the cointegration with rank 1

H1 : rank (�) = 1:

Note again that in case we reject the null hypothesis we only get the information that the system is

cointegrated, however the cointegration rank can be di¤erent than 1: The LR statistic for this case

is de�ned by

LRT (1) = �max(d̂1) = �2 ln [LR (0j1)] = �T ln[1� �1(d̂1)]; (8)

where

d̂1 = argmax
d2D

L1(d) = argmax
d2D

�max(d)

and L1 denotes the likelihood under the hypothesis of rank 1.

Recall that under the null of no cointegration (r0 = 0) we cannot hope that d̂1 or d̂p estimate

consistently a nonexisting true value of d; and because of that tests (7) and (8) could be interpreted

as sup LR tests, in the spirit of Davies (1977) and Hansen (1996).

In ×asak (2010) we demonstrated that

LRT (p) = trace(d̂p)
d! sup
d2D

trace [$(d)] = Jp (9)

and

LRT (1) = �max(d̂1)
d! sup
d2D

�1 [$(d)] = Ep (10)

where D � (0:5; 1] is a compact set,

$(d) =

Z 1

0

(dBd)B
0
d

�Z 1

0

BdB
0
ddu

��1 Z 1

0

Bd (dBd)
0
;

and Bd is a p-dimensional standard fractional Brownian motion with parameter d 2 (0:5; 1];

Bd (x) = �
�1 (d)

Z x

0

(x� z)d�1 dB (z) ;

B being standard Brownian motion.

We might apply directly sup tests for testing the rank r > 0: However in ×asak (2008) it is

found that under the null hypothesis H0 of the positive cointegration rank r = r0 > 0; d̂r0 is

root-T consistent and asymptotically normal. By contrast, when the null hypothesis H0 is true,

d̂r computed under the alternative for some r > r0 > 0; can be expected either to be consistent

for d; though with a di¤erent asymptotic distribution, or to be random, but with an asymptotic

distribution that would depend on the data generating process (as happens when r0 = 0). Our
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simulations support the �rst situation, which is consistent with the fact that in this case d is

actually identi�ed (by the r0 > 0 cointegration relationships).

The second possibility based on testing the signi�cance of the eigenvalues �r0+1
�
d̂r

�
; : : : ; �p

�
d̂r

�
;

r > r0, would render non pivotal asymptotic distributions and no feasible critical values tabulation.

4 Testing the cointegration rank

Recall we consider the problem of rank estimation in the fractionally cointegrated model (1), when

d0 is unknown. The main idea is to establish the cointegration rank using a sequence of the likelihood

ratio tests, estimating d in every step of the sequence. We can perform the sequence of trace tests1 ,

where we test the null hypothesis H0 of the cointegration rank r0; where r0 = 1; 2; etc.

H0 : rank (�) = r0 > 0;

against the alternative hypothesis H1 of the full rank of the impact matrix �

H1 : rank (�) = p:

Note that the hypothesis of the full rank of the impact matrix � means that the VAR is stationary

in levels rather than that we have cointegration in the system. However if we reject the null of a

certain number of cointegrating vectors we move to the next step in the sequence of tests rather

than accept the information given by the alternative hypothesis.

Another option we consider is to perform a sequence of the maximum eigenvalue tests2 , where

we test the null hypothesis H0 of the cointegration rank r0; where r0 = 1; 2; etc.

H0 : rank (�) = r0 > 0;

against the alternative hypothesis H1 of the cointegration rank r1 = r0 + 1;

H1 : rank (�) = r0 + 1:

Recall that again we do not get complete information about the rank by a separate usage of one

test from the sequence. Only if at a certain stage we cannot reject the null hypothesis of the

cointegration rank r0 we can interpret the result as an information about the rank. If we reject also

the null hypothesis of cointegration rank r0 = p� 1 then the system was stationary in levels rather

than cointegrated.

Note that in general LR tests for testing the cointegration rank r0 against r1 can be derived

based on the solutions of the eigenvalue problem (4) as

LRT (r0jr1) = �2 ln [LR (r0jr1)] = �T

8<: jS00(d̂r1)j+
r1P
i=1 ln[1� �̂i(d̂r1)]

�jS00(d̂r0)j �
r0P
i=1 ln[1� �̂i(d̂r0)]

9=; ; (11)

where estimates of the cointegration degree under the null (d̂r0) and under the alternative (d̂r1)
1Note that we denote by trace test every LR test with the alternative hypothesis of the full rank of the matrix �:
2Note that we denote by maximum eigenvalue test every LR test with the cointegration rank under the alternative

hypothesis higher by 1 than under the null
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will be in general di¤erent. However test statistic LRT (r0jr1) has unknown so far asymptotic
distribution which could be di¢ cult to derive and hardly useful in practice.

The inference would simplify if we decide to use a common estimate d̂ = d̂r1 = d̂r0 for both of

them. Such an assumption seem not to in�uence the generality of our results in any sense, since the

model (1) we consider assumes that all the cointegrating relations share the same memory. However

we could choose whether to estimate the cointegration degree under the null or under the alternative

hypothesis.

We consider both estimating d under the null and under the alternative. Note that Lyhagen

(1998) has tabulated the asymptotic distribution of the trace test statistic in a fractional framework

under the assumption that we know the true cointegration degree d03 : Our �rst proposal is to apply

his results for the case when we do not know d and to pre-estimate d under the null hypothesis and

use this estimate (d̂r0) as the true value of the cointegration degree d0: Then for this kind of test

we can use the critical values tabulated in Lyhagen (1998), since d̂r0 !p d0 under the null H0. To

easy the notation we will call this test as Lyhagen�s trace test.

Our second proposal is to estimate d under the alternative hypothesis so that we could extrap-

olate naively the asymptotic distributions of the sup tests derived in ×asak (2010) to test also for

higher ranks. We call these tests naive sup trace and naive sup maximum eigenvalue test further in

the paper.

In Section 4.7 we check and compare by Monte Carlo simulation the �nite samples performance

of Lyhagen�s trace, naive sup tests, LR tests based on the standard VECM (called as Johansen�s

tests to easy the notation) and a new two-step procedure that we propose and describe in the next

section.

5 Two-step procedure to establish the rank

In this section we propose a new two-step procedure to establish the cointegration rank. The �rst

step consists in the estimation of the model (1) under the null hypothesis H0 of cointegration rank

r = r0: This provides consistent estimates of d, � and of the decomposition � = ��0, where � and

� are p � r matrices. Then we can compute (super) consistent estimates of �?; orthogonal to �;

so that �0?Xt is not cointegrated (in any direction). Further, taking �̂? as given, we propose to

implement sup tests, described in Section 4.3, based on the p� r0 vector series �̂
0
?Xt: In this case

d is reestimated again, by contrast with the alternative procedures that would �x d = d̂ from a

�rst step. Then the sup tests statistics would be compared to critical values from the Ep�r0 and

Jp�r0 distributions (see (9) and (10)) and given the superconsistency of �̂ and therefore of �̂? there

should be no estimation e¤ects for the �rst stage. Under the alternative �̂
0
?Xt contains at least one

further cointegrating relationship and the sup tests should be able to detect it consistently.

This procedure has two potential drawbacks. First, it ignores the information on the true d

provided by d̂r0 . Second, under the null �
0
?Xt is a (p� r0) � 1 vector of not cointegrated I (1)

series, but they are not pure I (1) processes as (1) would indicate for Xt when rank (�) = 0; but

are contaminated by the r0 -rank cointegrating residuals, which are I (1� d) series. Therefore, test
procedures should take into account this new feature of the data under (1): We discuss this issue

3And the same did Johansen and Nielsen in JN (2008), although they obtained slightly di¤erent critical values.
So the behaviour of the so-called by us Lyhagen�s test will us the �avour of the behaviour of JN(2008) LR test with
an extra step, where the cointegration degree is estimated under the null.
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with two examples.

Example 1 Triangular model.
Consider a triangular representation of cointegrated I (1) series with rank r; with conformable par-

tition of matrices with X 0
t = (y

0
t; x

0
t) and �

0 =
�
Ir �


�
; all matrices with full rank,

 
Ir �

0 Ip�r

! 
yt

xt

!
=

 
�d�1 0

0 ��1

! 
"1t

"2t

!
:

Then we have that  
yt

xt

!
=

 
Ir 


0 Ip�r

! 
�d�1"1t

��1"2t

!
and therefore

�0?Xt = �0?

 
Ir 


0 Ip�r

! 
�d�1"1t

��1"2t

!

=
�
M1 M2

� �d�1"1t

��1"2t

!
;

where M2 is a matrix with full rank and therefore there is no b such that b0
�
�0?Xt

�
is an I (1� d)

process, a process less integrated than �0?Xt: As far as M1 6= 0 we can see that �0?Xt contains some

I (1� d) terms, by contrast with (1) when r = 0 and � = 0: The interesting feature is that these

I (1� d) terms are spanned by �d�1"1t; which are the cointegrating residuals of �0Xt:

Looking at the representation of �0?�Xt; the substitution of the past values of M1�
d0"1t; i.e.

M1

�
�d0 � 1

�
"1t by �

0�Xt�1 = �
d0"1t�1 amounts to comparing the sequences

Pt
j=1 �j (d0) "1t�j

and
Pt

j=1 �j�1 (d0) "1t�j , which are also present in the discussion of Lobato and Velasco (2007).

The main di¤erence is that �j (d0) < 0 for j > 0; whereas �0 (d0) = 1; so some innovations have

reversed sign in each series, despite the weights being asymptotically similar for large j:

Example 2 General model.
From (1) we can write the following representation using Theorem 8 of Johansen (2008)

Xt = C���"t +�
d��Y +t

where C = �? (�
0
?�?)

�1
�0? and Y

+
t � I (0) : Then

�0?Xt = C����"t +�
d���0?Y

+
t

where C� = �0?C is full rank under the null hypothesis H0, so that �
0
?Xt is I (�) and not cointegrated.

However the term �d���0?Y
+
t is I (� � d) and since �0Xt is also I (� � d) we could use �̂

0
Xt as a

proxy for this term.

To capture this e¤ect at I (1� d) ; � = 1 level when testing for r = r0 > 1 we propose to estimate

either the following fractional error correction model

��̂
0
?Xt = ab0(1���d)��̂

0
?Xt + 


�
�̂
0
�Xt�1

�
+ et;
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or alternatively

��̂
0
?Xt = ab0(1���d)��̂

0
?Xt + 
�Xt�1 + et;

where �̂ is the ML estimate of � under the null hypothesis of the cointegration rank r = r0; and

�̂? is in its null space. The second equation, considering �Xt�1 as an additional regressor instead

of the increments of the cointegration residuals, �̂
0
�Xt�1; takes into account both the directions in

�̂
0
and in �̂

0
?: This may improve size, but of course can have e¤ects on power, because of a possible

correlation of �Xt�1 with the regressor (1���d)��̂
0
?Xt:

Then the test statistics are LRT (1) and LRT (p� r0), where we replace Xt by �̂
0
?Xt and we

pre�lter the involved series with a regression on �̂
0
�Xt or �Xt: Our proposal is to approximate the

asymptotic distribution of these test statistics by Ep�r0 and Jp�r0 respectively since we check that

replacing �? by �̂
0
? has no asymptotic impact on the test statistics under the assumption that

�̂? � �? = Op
�
T�d0

�
; see Appendix A.

6 Rank testing in ECM with short run noise

Following Avarucci (2007), we allow now for short run correlation in the fractional cointegration

relationship and in the levels and use the model

��Xt = �(�
�d � 1)A (L)��Xt + (I �A (L))��Xt + "t; (12)

where A (L) = I � A1L � � � � � AkL
k. This model can be showed to encompass triangular models

used in the literature (cf. Robinson and Hualde (2003)) and has nice representations if the roots of

the equation jA (z) j = 0 are out of the unit circle, � > d: Basically this model implies that there is

fractional cointegration among the prewhitened series Xy
t = A (L)Xt; for which (1) holds. It can

be seen as a multivariate extension of Hualde and Robinson�s (2007) bivariate cointegrated model.

In fact, if Xy
t is cointegrated with cointegrating vector �; Xt is also cointegrated, with cointegrating

vector �� = A (1)
0
�; using the representation A (L)�1 = A (1)

�1
+� ~A (L) ; with

P1
j=1 jj ~Aj jj <1.

That is,

Xt = A (L)
�1
C���"t +�

d��A (L)
�1
Y +t

= A (1)
�1
C���"t + ~A (L)C�1��"t +�

d��A (L)
�1
Y +t

and therefore

��0Xt = �0A (1) ~A (L)C�1��"t +�
d���0A (1)A (L)

�1
Y +t

is I (min f� � 1; � � dg) : If � = 1 the cointegrating residuals are then I (1� d) as before:
This way of allowing for lags in the model imposes a VAR(k) structure on the I (1) variables.

Alternative speci�cations use VAR models in the fractional lag operator Ld = 1 � �d; so that
L1 = L; see Johansen (2008, 2009). Both approaches may have advantages and disadvantages,

but inference for the model proposed in Johansen (2008, 2009) complicates because both short and

long run parameters depend on the parameter d; which is always identi�ed, even in absence of

cointegration.

Model (12) is nonlinear in � and A1; : : : ; Ak, so ML estimation can not be performed using

the usual two step procedure of Johansen to prewhiten �rst the di¤erenced levels ��Xt and the
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fractional regressor (1 � ��d)��Xt given a particular value of d: Instead we could estimate the

unrestricted linear model

��Xt = ��0(��d � 1)��Xt +
kX
j=1

LjBj
�
(��d � 1)��Xt

	
+

kX
j=1

LjAj�
�Xt + "t;

under the assumption of � being of rank r; but we do not impose Bj = �Aj : The estimation pro-

cedure then follows as in Johansen�s method but with an initial step to prewhiten the main series�
(1���d)��Xt

	
and ��Xt on k lags of each. This estimate could be ine¢ cient compared with

the ML estimate, but much simpler to compute and analyze.

Given the pseudo ML estimate of �, we can construct the projection �̂
0
?Xt and propose a similar

second step, but in this case with the ECM enlarged by lags of �Xt;

��̂
0
?Xt = ab(1���d)��̂

0
?Xt +

kX
j=1

Cj�Xt�j + et: (13)

To justify such model, we note that in a triangular model set up, including a VAR modelization

A (L)Xt = Xy
t ;

Xt = (I �A (L))Xt +

 
Ir 


0 Ik�r

! 
�d�1"1t

��1"2t

!
and therefore

�0?Xt =
kX
j=1

�0?AjXt�j +
�
M1 M2

� �d�1"1t

��1"2t

!

where M2 is full rank, with �
0
?Xt containing some I (1� d) terms.

Example 3 General model. From the representation in Theorem 8 of Johansen (2008),

�0?Xt = C����"t +
kX
j=1

�0?AjXt�j +�
d���0?Y

+
t

where C� = �0?C is full rank, so that �0?Xt is I (�) and not cointegrated. However the term

�d���0?Y
+
t is I (� � d) :

In the augmented regression (13) we could impose the structure �̂
0
?Aj in the coe¢ cients of

�Xt�j ; but it can be preferable to let the coe¢ cients unrestricted using the whole vector �Xt�j .

In this way we take into account simultaneously the cointegrating directions, �̂
0
�Xt�j , that will

serve to take into account the contribution of �d�0?Y
+
t ; and the orthogonal directions to these ones,

�̂
0
?�Xt�j :

Then, the asymptotic distribution of the maximum eigenvalue and test test statistics, LRT (1)

and LRT (p� r0), is approximated by Ep�r0 and Jp�r0 respectively, since the proof that the ran-
domness of �̂? does not a¤ect test statistics in Appendix A can easily be extended to the augmented

set up.
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7 Rank Testing with di¤erent memory

In this section we propose a testing procedure to establish the cointegrating rank in case we have

cointegrating relations with di¤erent memory. This procedure can be seen as a generalisation of the

LR test for cointegration rank derived by Johansen and Nielsen, see Johansen and Nielsen (2010b),

in the sense that our procedure is also LR test. However the asymptotic distribution of our test

appears to be di¤erent and does not depend on the true cointegration degree, which is the case in

Johansen and Nielsen (2010b). The asymptotic distribution of our procedure, that we derive in the

following section, proves to have the same form as the asymptotic distribution of sup tests in ×asak

(2010).

Tests we propose are LR tests based on the FVECM model that allows di¤erent memory of

di¤erent cointegrating relations. Particularly we are interested in testing whether exists any extra

cointegrating relation with a memory that is smaller than memory of the cointegrating relations

under the null. Note that in practice we would rather detect stronger memory �rst. An extra coin-

tegrating relation with the same memory could be possibly found by Johansen-Nielsen procedure.

Recall Johansen and Nielsen (2010a) consider the following model

��Xt = ��
��dLdXt +

kX
i=0

�i�
�LidXt + "t (14)

and tests that � = ��0: They demonstrate that likelihood ratio test that � = ��0 has rank r has

asymptotic distribution

�2 logLR(� = ��0)
d! trace

"Z 1

0

(dB)Bd0
0
�Z 1

0

Bd0B
0
d0

��1 Z 1

0

Bd0 (dB)
0
#
;

where B and Bd0 are both p � r dimensional. (Note the di¤erence in notation, Bd0 is denoted as

Bd0�1 by Johansen and Nielsen (2010b)).

The model we consider is the following

�Xt = �0�
0
0

�
��d

0

� 1
�
�Xt + �1�

0
1

�
��d

1

� 1
�
�Xt + "t; (15)

where Xt is a vector of I(1) series of order p�1, "t is a p�1 vector of Gaussian error with variance-
covariance matrix 
: The matrices �0 and �0 are p�r0 of rank r0 and represent the error correction
and cointegrating coe¢ cients matrix, respectively, that share the same memory d0: They could be

estimated under the rank r0 established by Johansen-Nielsen�s procedure if we knew d0. Matrices

�1 and �1 are p � r1 of rank r1 and represent the error correction and cointegrating coe¢ cients

matrix, respectively, that correspond to the relations with the memory d1; that can be possibly

smaller than d0:

Based on the representation (15) we would like to test the null hypothesis of r0 cointegrating

relations �0 with memory d
0 against the alternative hypothesis that there are extra r1 cointegrating

relations �1 with a di¤erent memory d
1:

The procedure of testing and estimation is the following.

1. Estimate the model

�Xt = �0�
0
0

�
��d

0

� 1
�
�Xt + "t; (16)
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under the null of r0 cointegrating relations sharing the same memory d0:We know from Lasak

(2008) that this will give us consistent estimates of �̂0; �̂0 and d̂
0 if the rank r0 is correctly

speci�ed. (According to Stakenas (2008) they are consistent even if the rank is not correctly

speci�ed)

2. Consider the model

�Xt = �0�
0
0

�
��d

0

� 1
�
�Xt + �1�

0
1

�
��d

1

� 1
�
�Xt + "t; (17)

and plug in estimated �̂0; �̂0 and d̂
0: (Or use the true ones �0; �0 and d

0 in case they are

known). De�ne

Z0t

�
d̂0
�

= �Xt � �̂0�̂
0
0

�
��d̂

0

� 1
�
�Xt; (18)

Z1t(d
1) =

�
��d

1

� 1
�
�Xt (19)

and

Sij(d
i; dj) = T�1

TX
t=1

Zit(d
i)Zjt(d

j)0 i; j = 0; 1

3. Construct and solve the following eigenvalue problem����(d̂0; d1)S11(d1)� S10(d̂0; d1)S�100 (d̂0)S01(d̂0; d1)��� = 0: (20)

Note that S11(d1) depends only on d1; the memory of the extra cointegrating relations under

the alternative, S00(d̂0) depends only on d̂0; the estimated memory of cointegrating relations

under the null, while S10(d̂0; d1); S01(d̂0; d1) depends on both d̂0 and d1:

4. Next solve the eigenvalue problem (20) and choose the solution that corresponds to the d1

for which the likelihood function is maximized. Note that value of the likelihood function

depends on the rank imposed under the alternative, so in general we have di¤erent solutions

for two tests described below.

We consider two types LR tests, trace test and maximum eigenvalue test, that will be called

sup-tests because of their asymptotic distribution derived in the next section.

Using trace test we test the null hypothesis

H0 : rank (�) = r0

against the alternative hypothesis

H1 : rank (�) = p

using the test statistic de�ned by

sup trace = trace(d̂0; d1) = �2 ln [LR (r0jp)] = �T
pX
i=1

ln[1� �̂i(d̂0; d1)]; (21)
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where

d̂0 = argmax
d̂02D

Lr0(d
0)

d̂1p = argmax
d12D

Lp(d̂
0; d1) = argmax

d12D
trace(d̂0; d1)

and Lr denotes the likelihood under the hypothesis of rank r:[Discussion on the set D, especially
why it is the same for both d̂0 and d1 to be included]

By maximum eigenvalue statistic we test cointegrating rank r0 against rank r0 + 1; i.e. we test

the null hypothesis

H0 : rank (�) = r0

against

H1 : rank (�) = r0 + 1

and the test statistic is de�ned by

sup lambdamax = �max(d̂
0; d1) = �2 ln [LR (r0jr0 + 1)] = �T ln[1� �̂1((d̂0; d1)] (22)

with

d̂0 = argmax
d̂02D

Lr0(d
0)

d̂1r0+1 = argmax
d12D

Lr0+1(d̂
0; d1) = argmax

d12D
�max(d̂

0; d1)

and Lr denotes the likelihood under the hypothesis of rank r.

Recall that while d̂0 estimates consistently the memory of the �rst r0 cointegrating relations,

we cannot hope that d̂1p or d̂
1
r0+1 estimate consistently a nonexisting, under the null, true value of

d1: Because of that our tests can be interpreted as sup LR tests, in the spirit of Davies (1977) and

Hansen (1996), similarly to tests proposed in Lasak (2010) to test the null of no cointegration.

7.1 Asymptotic distribution

In this section we derive the asymptotic distribution of the likelihood ratio tests that we have

proposed in (21) and (22). First let�s state assumptions about the innovations, necessary to derive

the asymptotic distributions of our likelihood ratio tests.

Assumption 1 "t are independent and identically distributed vectors with mean zero, positive def-

inite covariance matrix 
; and Ejj"tjjq <1; q � 4; q > 2= (2d� 1) ; d 2 D

Note that under H0 we have:

�Xt � �̂0�̂
0
0

�
��d̂

0

� 1
�
�Xt = "t; (23)

or

Z0t

�
d̂0
�
= "t; t = 1; :::; T
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so it can be easily seen that

S00

�
d̂0
�

P! 
:

Further using the methods of Marinucci and Robinson (2000) we obtain that under Assumption 1

T 0:5�d
1

Z1[T� ]
!!Wd1(�); for d1 > 0:5;

where !! means convergence in the Skorohod J1 topology of D[0; 1]; Wd1 is a fractional Brownian

motion called by Marinucci and Robinson (1999) "Type II" fractional Brownian motion and de�ned

as

Wd(�) =

Z �

0

(� � s)d�1

� (d)
dW (s);

and W (s) is vector Brownian motion with covariance matrix 
:

Then by the Continuous Mapping Theorem we have the following convergence for each d1 > 0:5

T 1�2d
1

S11(d
1)

d!
Z 1

0

Wd1(�)Wd1(�)
0d� (24)

and, similarly to Robinson and Hualde (2003), Proposition 3,

T 1�d
1

S10(d̂
0; d1)

d!
Z 1

0

Wd1(�)dW
0;

where d! denotes convergence in distribution.

The product moments T 1�2d
1

S11(d
1), T 1�d

1

S10(d̂
0; d1) are Op (1) uniformly in d1 since we can

show weak convergence for d1 2 D in the space C (D) of continuous functions in D (see Proof of

Theorem 1 in the Appendix A in ×asak (2010)), S00 is also Op (1), so the roots �̂i(d̂0; d1) of equation

(20) converge to zero like T�1 under the null of no cointegration: This implies that

�T
pX
i=1

ln[1� �̂i(d̂0; d1)] = T

pX
i=1

�̂i(d̂
0; d1) + op (1) :

The sum of the eigenvalues can be found as follows����(d̂0; d1)S11(d1)� S10(d̂0; d1)S�100 (d̂0)S01(d̂0; d1)��� = 0: (25)

that is equivalent to solve the equation����(d̂0; d1)I � S�111 (d1)S10(d̂0; d1)S�100 (d̂0)S01(d̂0; d1)��� = 0: (26)

which shows that

T

pX
i=1

�̂i(d̂
0; d1) = T trfS�111 (d1)S10(d̂0; d1)S�100 (d̂0)S01(d̂0; d1)g:

From the above reasoning we �nd that for each d1 the product

S�111 (d
1)S10(d̂

0; d1)S�100 (d̂
0)S01(d̂

0; d1)
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converges in distribution towards

�Z 1

0

Wd1 (�)Wd1 (�)
0
d�

��1 Z 1

0

Wd1 (�) dW
0
�1

Z 1

0

(dW )Wd1 (�)
0
;

which we can write as


�1=2
�Z 1

0

Bd1 (�)Bd1 (�)
0
d�

��1 Z 1

0

Bd1 (�) dB
0
Z 1

0

(dB)Bd1 (�)
0
�

1=2

�0
; (27)

where Bd1 (�) = 
�1=2Wd1 (�) is the standard fractional Brownian motion. Then we can see that

asymptotic distribution of trace and maximum eigenvalue for a �xed d1 are respectively the trace

and the greatest eigenvalue of (27), i.e.

trace(d̂0; d1)
d! trace

"Z 1

0

(dB)Bd1 (�)
0
�Z 1

0

Bd1 (�)Bd1 (�)
0
d�

��1 Z 1

0

Bd1 (�) (dB)
0
#

�max(d̂0; d1)
d! �1

"Z 1

0

(dB)Bd1 (�)
0
�Z 1

0

Bd1 (�)Bd1 (�)
0
d�

��1 Z 1

0

Bd1 (�) (dB)
0
#
:

In the case when d1 is estimated the following theorem applies.

Theorem 1 When d1; d1 2 D, is estimated by the maximum likelihood principle under the model

(15) using procedure proposed in the previous section the asymptotic distributions of trace and max-

imum eigenvalue statistics are given respectively by

sup trace = trace(d̂0; d̂1p)
d! sup
d̂1p2D

trace
�
$(d1)

�
;

and

sup lambdamax = �max(d̂0; d̂1r0+1)
d! sup
d̂1r0+1

2D
�1
�
$(d1)

�
;

where D = [0:5 + "; 1] is a compact set, and

$(d1) =

Z 1

0

(dB)Bd1 (�)
0
�Z 1

0

Bd1 (�)Bd1 (�)
0
d�

��1 Z 1

0

Bd1 (�) (dB)
0
;

where B is a p � r0-dimensional Brownian motion on the unit interval, Bd1 (�) is the standard

fractional Brownian motion.

The proof follows as in the Appendix A of ×asak (2010). And the same comments concerning

set D apply.

Finally let us consider the behavior of our tests under the alternative. Note that if the null

hypothesis is not true and we have extra cointegrating relation with memory d1 � d0, then one of

the eigenvalues in (20) will be positive in the limit. Then

�2 ln [LR (r0jp)] > �T ln
�
1� �̂1(d̂0; d̂1p)

�
p!1
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and

�2 ln [LR (r0jr0 + 1)] = �T ln
�
1� �̂1(d̂0; d̂1r0+1)

�
p!1:

So the asymptotic power of both tests is 1.

8 Finite sample properties

(incomplete yet, procedure to test the rank with di¤erent memory to be included)

In this section we compare by Monte Carlo simulation the performance in �nite samples of all

the tests discussed in this paper,

� new procedures based on projections on �̂
0
?Xt : LRT (p� r0) for trace and LRT (1) for

maximum eigenvalue test;

� trace and maximum eigenvalue tests based on the estimation of the standard VECM like in

Johansen (1988, 1991, 1995), called Johansen�s trace and Johansen�s maximum eigenvalue

tests to easy the notation;

� trace test proposed by Lyhagen (1998), to which we add pre-estimation of d under the null,
called to simplify as Lyhagen�s trace (it can be viewed as a version of Johansen and Nielsen�s

(2010b) LR test as well);

� naive sup tests, where we estimate d under the alternative and we use sup tables with p� r0
degrees of freedom in line of the standard "Johansen�s procedure".

Let us describe the data generating process. We simulate a trivariate system (p = 3) using the

following triangular representation

Xt =

 
Ir 


0 Ip�r

! 
�d0�1"1t

��1"2t

!
; t = 1; :::; T (28)

for the basic model (1). Note that the triangular representation (28) implies ECM (1) with

� =

 
�Ir
0

!
and �0 = (Ir � 
) :

We consider the model (12) with k = 1. For this model we add to (28) the autoregression

Zt = A1Zt�1 +Xt;

with Z0 = 0 and A1 = a Ip; where 3 di¤erent values for a are considered a = �0:6; a = 0 or a = 0:6:
We simulate systems (28) cointegrated of order d0 = 0:55; 0:75 and 0:95:

Note that the case A1 = 0 is useful to check on one hand the e¤ect of overspeci�cation of k in

terms of size and power, and also can be used to check whether it is better to incorporate the whole

vector �Xt or cointegrating residuals ��̂
0
Xt in the regression to control the I (�d0) terms.

To check the size of the considered tests we simulate the system (28) with 1 cointegrating relation

� = [1 1 1]0, whereas to check the power we simulate the same system (28) with 2 cointegrating
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relations

� =

"
1 0 1

0 1 �1

#0
:

The innovations "t = ("01t; "
0
2t)

0 are Gaussian IID (0;
) where


 =

0B@ !2 !� !�

!� 1 0

!� 0 1

1CA
with !2 = 0:5 and � = 0 or � = 0:4:

We make all the simulations in Ox 3.40 or Ox 4.04 (see Doornik and Ooms (2001) and Doornik

(2002)) with 10,000 replications. We consider the sample sizes of T = 100; 200; 300 observations.

The results of Monte Carlos simulation are presented below. Tables 4.1-4.6 demonstrate the

percentage of rejections under the null hypothesis of cointegration rank r = 1. The percentage

of rejections under the alternative hypothesis of cointegration rank r = 2 is presented in Tables

4.7-4.12.

Table 4.1. Size of tests: d0 = 0:55; r0 = 1; r = 1; � = 0

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 5.4 5.8 5.7 5.1 5.5 5.3 5.3 5.2 4.9

LRT (1) 5.2 5.7 5.4 4.9 5.2 5.1 5.1 5.0 4.7

Johansen�s trace 4.6 5.1 4.9 4.0 5.0 4.9 2.2 3.3 4.1

Johansen�s lambdamax 4.5 5.0 4.9 3.9 5.0 4.8 2.0 3.3 4.0

Naive sup trace 3.8 3.3 2.7 3.4 3.7 3.2 1.8 2.9 3.5

Naive sup lambdamax 3.6 3.2 2.6 3.3 3.7 3.1 1.6 2.7 3.2

Lyhagen�s & JN�s trace 9.5 5.9 6.8 4.2 6.7 6.9 2.3 3.6 5.4

Table 4.2. Size of tests: d0 = 0:55; r0 = 1; r = 1; � = 0:4

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 6.8 8.1 9.0 6.1 6.7 7.1 6.2 6.0 6.0

LRT (1) 6.8 8.1 9.0 6.0 6.7 7.0 6.0 5.9 5.9

Johansen�s trace 5.1 5.2 5.0 4.7 5.2 5.0 2.7 4.2 4.7

Johansen�s lambdamax 5.0 5.2 5.0 4.7 5.2 5.0 2.5 4.1 4.6

Naive sup trace 3.8 3.1 2.5 3.9 3.7 3.1 2.2 3.5 3.9

Naive sup lambdamax 3.8 3.1 2.5 3.9 3.6 3.0 2.0 3.4 3.8

Lyhagen�s & JN�s trace 9.6 6.6 6.5 4.7 6.4 6.7 2.8 4.3 4.6
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Table 4.3. Size of tests: d0 = 0:75; r0 = 1; r = 1; � = 0

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 6.9 6.2 5.8 6.3 5.1 4.8 5.9 5.3 4.4

LRT (1) 7.1 5.8 5.7 6.0 4.2 5.0 5.1 5.3 4.0

Johansen�s trace 6.0 5.9 5.6 5.6 5.1 5.2 4.4 5.6 5.3

Johansen�s lambdamax 6.0 5.3 5.3 5.3 4.3 4.8 3.5 5.3 5.3

Naive sup trace 5.0 4.5 4.0 5.2 4.1 3.3 3.6 4.6 4.3

Naive sup lambdamax 5.3 3.7 3.4 4.8 3.4 3.8 2.9 4.2 4.2

Lyhagen�s & JN�s trace 11.3 5.2 4.6 5.7 4.6 4.0 4.5 5.6 5.2

Table 4.4. Size of tests: d0 = 0:75; r0 = 1; r = 1; � = 0:4

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 8.2 9.0 10.8 6.3 8.0 8.2 6.0 6.8 5.2

LRT (1) 8.2 8.2 10.9 5.9 7.2 7.9 5.1 6.7 4.7

Johansen�s trace 4.7 6.2 5.4 4.2 6.5 5.7 3.6 6.0 4.5

Johansen�s lambdamax 4.4 5.1 5.2 4.3 5.7 5.6 3.1 5.9 5.1

Naive sup trace 3.3 4.7 3.8 3.3 5.4 3.9 3.5 5.9 4.2

Naive sup lambdamax 3.7 4.1 3.4 3.2 4.9 3.8 1.3 3.7 3.0

Lyhagen�s & JN�s trace 6.5 5.5 4.2 4.0 6.5 4.8 3.5 5.9 4.2

Table 4.5. Size of tests: d0 = 0:95; r0 = 1; r = 1; � = 0

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 7.0 6.2 6.5 6.4 5.0 4.9 5.9 5.0 4.0

LRT (1) 7.1 6.0 5.7 6.2 4.0 5.1 5.2 5.0 3.8

Johansen�s trace 6.0 6.1 5.6 6.1 5.4 5.2 6.0 6.1 5.5

Johansen�s lambdamax 6.2 5.3 5.1 5.9 4.7 4.8 5.7 5.9 5.2

Naive sup trace 5.1 5.0 4.6 5.5 4.8 3.9 5.5 5.2 4.6

Naive sup lambdamax 5.0 4.3 4.3 5.2 3.9 4.3 5.0 4.7 4.4

Lyhagen�s & JN�s trace 8.7 6.1 5.5 7.4 5.4 5.1 6.4 5.9 5.5
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Table 4.6. Size of tests: d0 = 0:95; r0 = 1; r = 1; � = 0:4

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 9.1 9.8 12.0 6.2 7.9 7.9 5.5 6.7 5.2

LRT (1) 9.0 9.1 11.7 5.9 6.9 7.3 5.5 6.2 4.6

Johansen�s trace 4.6 6.0 5.4 4.7 6.4 5.7 4.8 6.5 5.1

Johansen�s lambdamax 4.4 5.1 5.4 4.1 5.4 5.6 4.4 6.2 5.1

Naive sup trace 3.8 4.9 4.8 3.8 6.0 4.5 3.7 5.8 4.2

Naive sup lambdamax 3.8 4.0 4.0 3.4 4.8 4.5 3.0 4.7 4.0

Lyhagen�s & JN�s trace 5.7 5.8 5.3 4.8 6.6 5.6 4.4 6.3 4.9

Two step tests have reasonable size for simpler model (� = 0); but when � 6= 0 it is oversized,
more as d0 increases, and for some designs it is not improving as T grows. Johansen�s tests and

naive sup tests are usually undersized, while Lyhagen�s test can be seriously oversized when a � 0:
Overall, naive sup tests seem to be the best ones in the terms of size, being the most conservative

ones. The case with a > 0 appears to be more di¢ cult.

Table 4.7. Power of tests: d0 = 0:55; r0 = 1; r = 2; � = 0

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 99.1 100 100 80.2 99.9 100 10.0 45.0 84.1

LRT (1) 99.4 100 100 81.0 99.9 100 7.5 44.6 85.5

Johansen�s trace 88.8 99.3 100 59.2 95.1 99.2 6.1 34.2 69.3

Johansen�s lambdamax 88.6 99.1 100 60.3 95.2 99.4 5.4 34.6 68.8

Naive sup trace 97.0 100 100 67.3 99.8 100 5.7 34.7 74.2

Naive sup lambdamax 97.8 100 100 68.1 99.8 100 4.4 35.4 73.7

Lyhagen�s & JN�s trace 99.4 100 100 82.3 99.9 100 6.4 45.0 76.9

Table 4.8. Power of tests: d0 = 0:55; r0 = 1; r = 2; � = 0:4

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 99.7 100 100 87.2 100 100 18.2 59.2 91.0

LRT (1) 99.7 100 100 87.4 100 100 15.5 59.9 91.4

Johansen�s trace 92.5 99.6 100 66.0 97.4 99.6 8.6 38.8 72.1

Johansen�s lambdamax 91.6 99.5 100 66.2 97.5 99.6 6.1 39.7 72.2

Naive sup trace 99.8 100 100 73.6 99.9 100 8.7 40.1 76.2

Naive sup lambdamax 98.8 100 100 73.3 100 100 5.8 39.8 78.9

Lyhagen�s & JN�s trace 99.8 100 100 86.7 100 100 9.6 39.6 73.5
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Table 4.9. Power of tests: d0 = 0:75; r0 = 1; r = 2; � = 0

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 100 100 100 99.9 100 100 42.1 98.6 100

LRT (1) 100 100 100 100 100 100 41.5 98.9 100

Johansen�s trace 100 100 100 98.9 100 100 35.6 95.8 100

Johansen�s lambdamax 100 100 100 99.1 100 100 36.1 95.3 100

Naive sup trace 100 100 100 99.2 100 100 32.6 96.2 100

Naive sup lambdamax 100 100 100 99.8 100 100 32.3 96.2 100

Lyhagen�s & JN�s trace 100 100 100 99.9 100 100 37.0 96.8 100

Table 4.10. Power of tests: d0 = 0:75; r0 = 1; r = 2; � = 0:4

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 100 100 100 100 100 100 56.3 98.8 100

LRT (1) 100 100 100 100 100 100 55.3 99.0 100

Johansen�s trace 100 100 100 99.5 100 100 40.1 96.6 100

Johansen�s lambdamax 100 100 100 99.8 100 100 40.9 97.0 100

Naive sup trace 100 100 100 99.8 100 100 37.2 97.0 100

Naive sup lambdamax 100 100 100 99.8 100 100 35.7 97.9 100

Lyhagen�s & JN�s trace 100 100 100 100 100 100 41.7 97.9 100

Table 4.11. Power of tests: d0 = 0:95; r0 = 1; r = 2; � = 0

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 100 100 100 100 100 100 90.8 100 100

LRT (1) 100 100 100 100 100 100 91.9 100 100

Johansen�s trace 100 100 100 100 100 100 87.6 100 100

Johansen�s lambdamax 100 100 100 100 100 100 89.6 100 100

Naive sup trace 100 100 100 100 100 100 85.1 100 100

Naive sup lambdamax 100 100 100 100 100 100 86.2 100 100

Lyhagen�s & JN�s trace 100 100 100 100 100 100 88.2 100 100
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Table 4.12. Power of tests: d0 = 0:95; r0 = 1; r = 2; � = 0:4

T 100 200 300 100 200 300 100 200 300

a -0.6 0. 0.6

LRT (p� r0) 100 100 100 100 100 100 93.8 100 100

LRT (1) 100 100 100 100 100 100 94.7 100 100

Johansen�s trace 100 100 100 100 100 100 89.5 100 100

Johansen�s lambdamax 100 100 100 100 100 100 92.5 100 100

Naive sup trace 100 100 100 100 100 100 86.3 100 100

Naive sup lambdamax 100 100 100 100 100 100 89.3 100 100

Lyhagen�s & JN�s trace 100 100 100 100 100 100 89.4 100 100

Power in general increases with d0 as expected, as well as in � and decreases with a: The two

step procedure appears as the most powerful in terms of raw power, but it is not clear it would be

the best in terms of size-adjusted power. Among other procedures, naive sup tests perform better

for small d0 (d0 = 0:55), but Johansen�s tests are better when d0 gets closer to d0 = 1 as is then the

appropriate LR test. Lyhagen�s version of the LR shows a behaviour close to the best one of these

single step tests.

9 Conclusions

We propose a new two-step procedure to establish cointegration rank in a fractional system. We

investigate the performance of the proposed procedure in �nite samples for a simple fractionally

cointegrated model and compare it with appropriate versions of sup LR tests, Lyhagen�s tests and

Johansen�s tests. All of them present important size problems to di¤erent extent, but naive sup LR

tests seem to be the most reliable and fares well in comparison with the most powerful alternatives.

We also proposed a new testing procedure that allows to �nd extra cointegrating relations with

di¤erent memory. This procedure can be seen as an extension of both Johansen-Nielsen�s (2010b)

procedure and ×asak�s (2010) test for no fractional cointegration.

Methodology developed in this paper allows to complete the basic likelihood analysis of fraction-

ally cointegrated systems with higher rank and can be adapted and further developed to include

deterministic terms and to allow for unknown memory of the original series, among other extensions.

10 Appendix A

Proof. We demonstrate here that replacing �? by �̂? makes no di¤erence asymptotically in two
step LR test statistics.

Setting V̂t = �̂
0
?Xt and V̂t (d) =

�
1���d

�
�V̂t and de�ning Vt and Vt (d) with the true �?; we

want to show that

T�d
TX
t=1

V̂t (d)�V̂
0
t � T�d

TX
t=1

Vt (d)�V
0
t !p 0
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uniformly for d 2 D if �̂? � �? = Op
�
T�d0

�
: We �rst have that

T�d
TX
t=1

V̂t (d)�V̂
0
t = T�d

TX
t=1

V̂t (d)�V
0
t + T

�d
TX
t=1

V̂t (d)
�
�V̂t ��Vt

�0
:

The �rst term is

T�d
TX
t=1

V̂t (d)�V
0
t = T�d

TX
t=1

Vt (d)�V
0
t + T

�d
TX
t=1

n
V̂t (d)� Vt (d)

o
�V 0t

where the �rst term on the right hand side is Op(1) uniformly in d and

T�d
TX
t=1

n
V̂t (d)� Vt (d)

o
�V 0t =

�
�̂
0
? � �0?

�
T�d

TX
t=1

Xt (d)�V
0
t ;

which is op (1) uniformly in d because T�d
PT

t=1Xt (d)�V
0
t is Op(1) uniformly in d:

The second term on the right hand side of (13) is

T�d
TX
t=1

V̂t (d)�X
0
t

�
�̂? � �?

�
= Op

�
T�d0

�
T�d

TX
t=1

V̂t (d)�Xt;

and this can be seen easily to be Op
�
T d0�d

�
= op (1) ; uniformly in d; because

T�1
TX
t=1

V̂t (d)�X
0
t !p lim

T!1
E

"
T�1

TX
t=1

Vt (d)�X
0
t

#
=

1X
j=0

�j (1� d) 
 0j <1

where  j are the Wold decomposition weights of �Xt; which is I (0). Then

T�d
TX
t=1

V̂t (d)�X
0
t

�
�̂? � �?

�0
= Op

�
T 1�d0�d

�
= op (1) ;

uniformly in d; because d0; d > 0:5; and the estimation e¤ect of �? is negligible.

11 Appendix B

In this appendix we justify the two step procedure described in Section 7.

1. � Size. Proof under the null with general FVECM (no necessary Triangular m. here):

�Xt = �0�
0
0

�
��b0 � 1

�
�Xt + "t

Proofs. We need to show that the estimation e¤ect is negligible, i.e.

sup
b12B

T 1�2b1
n
S11(b1)� Ŝ11 (b1)

o
= op (1)

sup
b12B

T 1�b1
n
S10(b1)� Ŝ10 (b1)

o
= op (1)

S00(b1)� Ŝ00 (b1) = op (1)
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where, e.g.

Ŝ11 (b1) =
1

T

TX
t=1

Ẑ1t (b1) Ẑ1t (b1)
0

Ŝ10(b1) =
1

T

TX
t=1

Ẑ1t (b1) R̂
0
t

with

Ẑ1t (b1) =
�
��b1 � 1

�
R̂t

R̂t = �Xt � �̂0�̂
0
0

�
��b̂0 � 1

�
�Xt

= "t +
n
�0�

0
0

�
��b0 � 1

�
� �̂0�̂

0
0

�
��b̂0 � 1

�o
�Xt:

Here the critical point is the proof of the di¤erence
n
S10(b1)� Ŝ10 (b1)

o
being negligible, in

particular the last term in this expansion,

sup
b12B

T 1�b1
n
S10(b1)� Ŝ10 (b1)

o
= sup

b12B
T�b1

TX
t=1

n
Z1t (b1) "

0
t � Ẑ1t (b1) R̂0t

o
= sup

b12B
T�b1

TX
t=1

n
Z1t (b1)� Ẑ1t (b1)

o
"t

+ sup
b12B

T�b1
TX
t=1

Ẑ1t (b1)
n
"0t � R̂0t

o
;

where Z1t (b1) =
�
��b1 � 1

�
"t and Rt = "t: Now

TX
t=1

Ẑ1t (b1)
n
"0t � R̂0t

o
�

TX
t=1

Z1t (b1)
n
"0t � R̂0t

o
=

TX
t=1

Z1t (b1)�X
0
t

n
�0�

0
0

�
��b0 � 1

�
� �̂0�̂

0
0

�
��b̂0 � 1

�o0
�

TX
t=1

Z1t (b1)
��
��b0 � 1

�
�X 0

t�0
	
(�0 � �̂0)0 + (:::) ;

where Z1t (b1) � I (b1) and
��
��b0 � 1

�
�X 0

t�0
	
� I (0) : Then for

WT (b1) =
TX
t=1

Z1t (b1)
��
��b0 � 1

�
�X 0

t�0
	

we have that E [WT (b1)] = T; while V ar [WT (b1)] = T 2 [tightness comes from Lasak (2010)

or Johansen-Nielsen] so WT = Op (1) for every b1; and the contribution of this term is

Op
�
T�b1T�1=2T

�
= Op

�
T 1=2�b1

�
= op (1) given that (�0 � �̂0) = T�1=2 and b1 > 1

2 .

� Analysis of power properties under the alternative: perhaps only do a preliminary

24



analysis justifying the alternative with a triangular model,

�Xt = �0�
0
0

�
��b0 � 1

�
�Xt + �1�

0
1

�
��b1 � 1

�
�Xt + "t:

Here the key point is to know the behavior of �̂; �̂ and b̂0: It is more obvious that (irrespective

of b0 =6= b1) �̂0 2 sp (�) ; � = (�0; �1) ; and �̂ will converge to the appropiate scaling given

the limit of the (normalized) �̂0: The limit value of b̂0 seems to be in the range [bmin; b
max]

depending on the model parameters, but there is a tendency to estimate bmax which is the

value which would provide a better �t, everything else the same (e.g. �xed components of

���): Then for some �
�0
0 = �0�0 + �1�1

R̂t = �Xt � �̂0�̂
0
0

�
��b̂0 � 1

�
�Xt

= �0�
0
0

�
��b0 � 1

�
�Xt + �1�

0
1

�
��b1 � 1

�
�Xt

���0��00
�
��b

�
0 � 1

�
�Xt + "t + op (1)

so it is pretty clear that R̂t is going to be cointegrated, possible still in both directions �0 and

�1; and any consistent cointegration test will detect that.
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