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Abstract

This paper considers methods for forecasting macroeconomic time series
in a framework where the number of predictors, N , is too large to apply
traditional regression models but not su¢ ciently large to resort to statisti-
cal inference based on double asymptotics. This is achieved by examining
the conditions under which partial least squares and principal component
regression provide consistent estimates of a stable autoregressive distrib-
uted lag model as only the number of observations, T , diverges. We
show both by simulations and empirical applications that the proposed
methods compare well to models that are widely used in macroeconomic
forecasting.
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1 Introduction

Growing attention has recently been devoted to forecasting economic time series
in a data rich framework. In principle, the availability of large data sets in
macroeconomics provides the opportunity to use many more predictors than
those that are conventionally used in typical small-scale time series models.
However, exploiting this richer information set comes at the price of estimating
a larger number of parameters, thus rendering numerically cumbersome or even
impossible the application of traditional multiple regression models.
A standard solution to this problem is imposing a factor structure to the

predictors, such that principal components [PCs] techniques can be applied to
extract a small number of components from a large set of variables. Some key
results concerning forecasting with many predictors through the application of
PCs are given in Stock and Watson (2002a, 2002b) and Forni et al. (2003, 2005).
Recently, Heij et al. (2007) and Groen and Kapetanios (2008) have, respec-
tively, proposed principal covariate regression and partial least squares [PLS] as
alternatives to PCs to extract the common factors. A di¤erent methodological
framework is Bayesian regression as recently advocated by De Mol et al. (2008)
and Banbura et al. (2010). Particularly, these authors attempted to solve the
dimensionality problem by shrinking the forecasting model parameters using
ridge regression [RR].
A common feature of the mentioned approaches is that statistical inference

requires a double asymptotics framework, i.e. both the number of observations
T and the number of predictors N need to diverge to ensure consistency of the
estimators. However, an interesting question to be posed is how large the pre-
dictor set must be to improve forecasting performances. At the theoretical level,
the answer provided by the double asymptotics method is clear-cut: the larger
N , the smaller is the mean square forecasting error. However, Watson (2003)
found that factor models o¤er no substantial predictive gain from increasing
N beyond 50, Boivin and Ng (2006) showed that factors extracted from 40
carefully chosen series yield no less satisfactory results than using 147 series,
and Banbura et al. (2010) also found that a vector autoregressive [VAR] model
with 20 key macroeconomic indicators forecasts as well as a larger model of 131
variables.
The above results advocate in favor of a sort of "medium-N" approach to

macroeconomic forecasting. Speci�cally, we aim at solving prediction problems
in macroeconomics where N is considerably larger than in typical small-scale
forecasting models but not su¢ ciently large to resort to statistical inference
that is based on double asymptotics methods. In order to accomplish this
goal, we reconsider some previous results in the PLS literature. Particularly,
we show that, under the so-called Helland & Almoy condition (Helland, 1990;
Helland and Almoy, 1994), both principal component regression [PCR] and the
PLS algorithm due to Wold (1985) provide estimates of a stable autoregressive
distributed lag [ADL] model that are consistent as T only diverges.
Since to date little is known on the statistical properties of PLS in �nite

samples, a Monte Carlo study is carried out to evaluate the forecasting per-
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formances of this method in a medium-N environment. To our knowledge,
our simulation analysis is unique in that we simulate time series generated by
stationary 20-dimensional VAR(2) processes that satisfy the Helland & Almoy
condition. Indeed, several studies were devoted to compare PCR and PLS with
other methods (see, inter alia, Almoy, 1996) but always in a static framework.
Our results suggest that ADL models estimated by PCR and, especially, PLS
forecast well when compared to both OLS and RR.
In the empirical application, we forecast four US macro time series by a

rich variety of methods using the same variables as in the 20-dimensional VAR
model in Banbura et al. (2010). The empirical �ndings indicate that forecasting
methods based on PLS outperform the competitors. Interestingly, Groen and
Kapetanios (2008) reached a similar conclusion using PLS as an alternative to
PCs in large-N dynamic factor models.
The remainder of this paper is organized as follows. The main theoretical

features of the suggested methods are detailed in Section 2. The Monte Carlo
design and the simulation results are discussed in Section 3. Section 4 compares
various forecasting procedures in an empirical applications to US economic vari-
ables. Finally, Section 5 concludes.

2 Theory

Let us suppose that the stationary and ergodic scalar time series to be forecasted,
yt+1; is generated by the following regression model

yt+1 = �
0Xt + "t; t = 1; :::; T (1)

where Xt is N -vector of stationary and ergodic time series, possibly including
lags of yt, "t is i.i.d. with E("t) = 0, E("2t ) = �2" , E("

4
t ) < 1, and such

that E("tjXt) = 0. Moreover, we assume that deterministic elements have
preliminarily been removed from both time series yt and Xt, and that each
element of Xt has been standardized to unit variance.
In order to reduce the number of parameters to be estimated in model (1),

we follow Helland (1990) and Helland and Almoy (1994) and take the following
condition:

Condition 1 Let E(Xtyt+1) = �xy and E(XtX 0
t) = �xx = ���

0, where � is
the eigenvector matrix of �xx and � the associated diagonal eigenvalue matrix.
We assume that

�xy = �q�; (2)

where �q is a matrix formed by q eigenvectors of �xx, and � is a q-vector with
all the elements di¤erent from zero.

The above condition is discussed at length in Helland (1990) and Næs and
Helland (1993). Essentially, it is equivalent to require that the predictors Xt
can be decomposed as

Xt = �Rt + �?Et
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where Rt = �0Xt, Et = �0?Xt, � and �? are, respectively, matrices of dimension
N � q and N � (N � q) such that �0� = Iq, �0?�? = IN�q, ��0 = IN � �?�0?,
E(RtE

0
t) = 0, and �xy = �E(Rtyt+1). Rt and Et are, respectively, called the

relevant and irrelevant components of predictors Xt. The linear combinations
�0qXt that span the space of the relevant components are then called the relevant
principal components.
Whether condition (2) is generally appropriate for macroeconomic time series

is an empirical issue that we will consider later in Section 4.
Notice that condition (2) implies

� = �q�
�1
q � (3)

where �q is the diagonal eigenvalue matrix associated with �q. Hence, model
(1) has the following factor structure:

yt+1 = �
0Ft + "t;

where Ft = ��1q �0qXt. Hence, since yt+1jt = E(yt+1jXt) is a linear transfor-
mation of Ft, the predictable component of yt+1 is entirely captured by the q
components Ft. This is not necessarily the case in dynamic factor models, where
the idiosyncratic term is generally not an innovation.
At the population level, PCR computes the prediction for yt+1 as �0PCRXt

where
�PCR = �q�q

�1�0q�xy (4)

In view of equation (3), it is clear under Condition (2) we have that �PCR = �.
However, notice that condition (2) does not require that the eigenvalues

associated to the eigenvectors�q are the q largest ones. In empirical applications
of PCR, it is clear the one has to select the relevant principal components and
the sample eigenvalues o¤er no guidance on this choice. As shown by Helland
(1990), PLS o¤er an e¤ective way to overcome this problem. Indeed, let �0PLSXt
indicate the PLS prediction of yt+1, where

�PLS � 
q(
0q�xx
q)�1
0q�xy; (5)


q = (!1; :::; !q) and

!i+1 = �xy � �xx
i(
0i�xx
i)�1
0i�xy; i = 1; :::; N � 1 (6)

with !1 = �xy. It follows by induction from (6) that 
q lies in the space spanned
by

(�xy;�xx�xy; :::;�
q�1
xx �xy);

and hence, under condition (2), in the space spanned by the eigenvectors �q.
Finally, this last result implies that !q+1 = 0 and �PLS = �.
Further features of PLS are better understood by considering the following

equivalent way to obtain the weights 
q (Helland, 1990). Let us de�ne V0;t = Xt
and

Vi;t = Vi�1;t � fi;t�i = Xt �
iX

j=1

fj�j ; (7)
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for i = 1; ::; q, where

fi;t = !
0
iVi�1;t;

!i = E(Vi�1;tyt+1);

�i = E(fi;tVi�1;t)=E(f
0
i;tfi;t)

It is easy to see from equation (7) that the PLS factors fi;t are uncorrelated
with one other and that they are a non-singular linear transformation of 
0qXt.
Hence, �0PLSXt may be equivalently obtained by a linear regression of yt+1 on
(f1;t; :::fq;t)

0.
The above alternative way of deriving PLS, which essentially is the popula-

tion version of the algorithm popularized by Wold (1985), reveals that the PLS
factors are orthogonal linear combinations of predictors Xt that are obtained
by maximizing their covariances with the target variable yt+1. Hence, di¤er-
ently from the principal components, the PLS factors take into account of the
comovements between the target series and the predictors.
Since both PCR and PLS are continuous functions of the elements of the

variance-covariance matrix of (yt+1; X 0
t)
0, it follows that under condition (2)

the sample versions of (4) and (5) are consistent estimators of � as T ! 1
by the Slutsky�s theorem. Helland and Almoy (1994) compared PCR and PLS
on the basis of their expected prediction error and concluded that no method
asymptotically dominates the other.
In the next sections we will assess the forecasting performances of PCR and

PLS both by simulations and empirical examples.

3 Monte Carlo analysis

Apart from consistency, not much is known on the statistical properties of PLS
and PCR. Hence, in this Section we carry out a Monte Carlo study to evaluate
the forecasting performances of these methods in a medium-N framework.
We start by simulating the following n-vector of stationary time series

Ht = �+�1Ht�1 +�2Ht�2 + �t;

where �2 is a diagonal matrix with the �rst q diagonal elements �2 drawn from
a Un[�0:95; 0:95] and the remaining elements equal to zero, �1 is a diagonal
matrix with the �rst q diagonal elements �1 are from a Un[�2 � 1; 1 � �2] and
the remaining elements equal to zero, � is n�vector of constant terms that are
drawn from a Un[0; n], and �t are i.i.d. Nn(0; In).
Moreover, we take the following linear transformation of the series Ut

Yt = QHt;

where Q is an orthogonal matrix that is obtained by the QR factorization of
a n � n�matrix such that its columns are generated by n i.i.d. Nn(0; In).
Hence, series Yt follow a stationary VAR(2) with a reduced-rank structure (see,
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inter alia, Cubadda (2007) and Cubadda et al. (2009) for the statistical and
economic implications of this kind of structures). It follows that each element
of Yt is generated by a stable ADL model with the same form as (1), where yt
is a generic element of the vector series Yt, "t is the corresponding element of
Q�t, and Xt = [Y 0t ; Y

0
t�1]

0.
We notice that the relevant and irrelevant components of Xt are respectively

given by
Rt = [Y

0
t�1Q�q; Y

0
t�2Q�q]

0

and
Et = [Y

0
t�1Q�n�q; Y

0
t�2Q�n�q]

0;

where [Q�q; Q�n�q] = Q, and Q�q is an n � q�matrix. Hence, condition (2) is
satis�ed.
We compare four direct forecasting methods. The �rst one is the h-step

ahead OLS forecast of y�+h, for � = T; :::; T +T ��h which is obtained as X 0
�
b�h

where b�h = (X 0X)�1X 0y, X = [X1; :::; XT�h]
0, and y = [yh+1; :::; yT ]0.

The second method is the ridge regression [RR] forecast, as suggested by De
Mol et al. (2008). Particularly, the RR forecast of y�+h is obtained as X 0

�
b�h�

where b�h� = (X 0X + �In)
�1X 0y;

and � is a shrinkage scalar parameter. Since De Mol et al. (2008) document
that superior forecasting performances are obtained for values of � between half
and ten times the number of predictors N , we use �=N = 0:5; 1; 2; 5; 10:
The third method is the h-step ahead PCR forecast of y�+h, which is ob-

tained as X 0
�
b�hPCR where b�hPCR = b�qb��1q b�0qX 0y;

and X b�q are the q sample PCs that are most correlated with y.
Finally, the last method is the h-step ahead PLS forecast of y�+h, which is

obtained as X 0
�
b�hPLS where b�hPLS = ( bF 0 bF )�1 bF 0y;bF = ( bF1; :::; bFT�h)0, and bFt = ( bf1;t; ::: bfq;t)0 is obtained recursively from equation

(7) having substituted the population covariances with their sample analogs.
We evaluate the competing methods by means of the mean square forecast

error [MSFE] relative an AR(2) forecast. To construct these relative MSFEs,
we simulate systems of n = 20 variables (i.e. N = 40 predictors) with q =
2; 4; 6; 8. We generate T + 170 observations of the vector series Yt for T =
240; 360; 480 corresponding to 20; 30; 40 years of monthly observations. The
�rst 50 points are used as a burn-in period, the last T � = 120 observations
are used to compute the h-step ahead forecast errors for h = 1; 3; 6; 12, and
the intermediate T observations are used to estimate the various models. The
results, reported in Tables 1-3, are based on 5000 replications of series yt.
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Table 1
Simulations, Relative MSFE

T = 240
q = 2

Models h = 1 h = 3 h = 6 h = 12 mean
PLS 1:000 0:944 0:966 0:978 0:972
PCR 0:948 0:954 0:967 0:978 0:962
OLS 1:051 1:100 1:136 1:169 1:114
RR(0.5) 1:010 1:057 1:090 1:118 1:069
RR(1) 0:986 1:031 1:062 1:088 1:041
RR(2) 0:959 1:001 1:029 1:052 1:010
RR(5) 0:932 0:968 0:991 1:010 0:975
RR(10) 0:930 0:959 0:978 0:994 0:961

q = 4
Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0:938 0:913 0:951 0:978 0:945
PCR 0:902 0:930 0:954 0:980 0:941
OLS 0:948 1:045 1:105 1:160 1:064
RR(0.5) 0:909 0:999 1:053 1:102 1:016
RR(1) 0:890 0:975 1:026 1:079 0:990
RR(2) 0:871 0:950 0:996 1:037 0:964
RR(5) 0:866 0:930 0:991 0:967 0:941
RR(10) 0:891 0:939 0:962 0:991 0:944

q = 6
Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0:862 0:887 0:937 0:978 0:918
PCR 0:859 0:912 0:947 0:981 0:924
OLS 0:863 0:995 1:080 1:150 1:022
RR(0.5) 0:823 0:949 1:024 1:087 0:972
RR(1) 0:812 0:928 0:998 1:056 0:948
RR(2) 0:803 0:908 0:971 1:023 0:926
RR(5) 0:815 0:898 0:949 0:991 0:913
RR(10) 0:855 0:915 0:954 0:985 0:925

q = 8
Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0:774 0:853 0:923 0:969 0:880
PCR 0:800 0:881 0:933 0:972 0:896
OLS 0:773 0:931 1:038 1:129 0:968
RR(0.5) 0:744 0:889 0:984 1:064 0:920
RR(1) 0:738 0:873 0:961 1:031 0:901
RR(2) 0:740 0:861 0:940 1:001 0:886
RR(5) 0:773 0:866 0:930 0:975 0:886
RR(10) 0:834 0:897 0:946 0:976 0:911

Notes: MSFE are relative to an AR(2) forecast. RR(�=N) indicates RR with a shrinkink parameter

�.
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Table 2
Simulations, Relative MSFE

T = 360
q = 2

Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0:970 0:949 0:971 0:986 0:969
PCR 0:940 0:958 0:971 0:986 0:964
OLS 0:991 1:038 1:069 1:105 1:051
RR(0.5) 0:975 1:021 1:050 1:083 1:032
RR(1) 0:964 1:009 1:037 1:068 1:019
RR(2) 0:949 0:993 1:019 1:048 1:002
RR(5) 0:930 0:970 0:993 1:018 0:978
RR(10) 0:926 0:960 0:980 1:000 0:963

q = 4
Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0:874 0:894 0:936 0:960 0:916
PCR 0:871 0:913 0:940 0:961 0:921
OLS 0:874 0:959 1:018 1:066 0:979
RR(0.5) 0:860 0:941 0:999 1:043 0:961
RR(1) 0:852 0:931 0:987 1:030 0:950
RR(2) 0:843 0:920 0:972 1:011 0:936
RR(5) 0:841 0:909 0:954 0:987 0:923
RR(10) 0:858 0:914 0:952 0:978 0:921

q = 6
Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0.803 0.855 0.922 0.963 0.888
PCR 0:818 0:890 0:930 0:964 0:901
OLS 0:800 0:918 0:997 1:062 0:945
RR(0.5) 0:786 0:899 0:975 1:035 0:924
RR(1) 0:780 0:889 0:962 1:020 0:913
RR(2) 0:775 0:879 0:946 1:000 0:976
RR(5) 0:783 0:872 0:930 0:976 0:890
RR(10) 0:809 0:881 0:929 0:967 0:895

q = 8
Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0:731 0:837 0:905 0:950 0:856
PCR 0:769 0:863 0:911 0:951 0:874
OLS 0:730 0:872 0:963 1:038 0:901
RR(0.5) 0:719 0:854 0:940 1:009 0:881
RR(1) 0:717 0:847 0:929 0:995 0:872
RR(2) 0:721 0:842 0:918 0:978 0:864
RR(5) 0:745 0:846 0:910 0:960 0:865
RR(10) 0:791 0:869 0:920 0:960 0:883

Note: See the notes for Table 1.
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Table 3
Simulations, Relative MSFE

T = 480
q = 2

Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0:944 0:939 0:963 0:973 0:955
PCR 0:926 0:945 0:960 0:973 0:951
OLS 0:956 1:001 1:029 1:058 1:011
RR(0.5) 0:947 0:991 1:019 1:047 1:001
RR(1) 0:941 0:984 1:011 1:038 0:994
RR(2) 0:932 0:974 1:000 1:025 0:983
RR(5) 0:919 0:958 0:982 1:004 0:966
RR(10) 0:914 0:949 0:971 0:989 0:952

q = 4
Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0:869 0:901 0:942 0:966 0:920
PCR 0:873 0:922 0:947 0:959 0:928
OLS 0:867 0:949 1:001 1:044 0:965
RR(0.5) 0:858 0:938 0:990 1:031 0:954
RR(1) 0:852 0:931 0:987 1:030 0:950
RR(2) 0:846 0:923 0:971 1:009 0:937
RR(5) 0:842 0:912 0:946 0:989 0:925
RR(10) 0:849 0:910 0:948 0:977 0:919

q = 6
Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0:766 0:851 0:913 0:952 0:871
PCR 0:800 0:879 0:922 0:955 0:889
OLS 0:762 0:874 0:958 1:020 0:904
RR(0.5) 0:756 0:865 0:955 1:004 0:892
RR(1) 0:753 0:860 0:938 0:995 0:886
RR(2) 0:753 0:855 0:929 0:983 0:880
RR(5) 0:762 0:854 0:918 0:965 0:875
RR(10) 0:785 0:863 0:917 0:957 0:879

q = 8
Models h = 1 h = 3 h = 6 h = 12 mean
PLS 0:708 0:836 0:906 0:951 0:850
PCR 0:753 0:865 0:917 0:954 0:872
OLS 0:706 0:845 0:943 1:012 0:878
RR(0.5) 0:701 0:848 0:931 0:997 0:867
RR(1) 0:700 0:837 0:924 0:987 0:862
RR(2) 0:702 0:833 0:916 0:975 0:857
RR(5) 0:721 0:836 0:901 0:960 0:856
RR(10) 0:756 0:852 0:911 0:956 0:867

Note: See the notes for Table 1.
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The results indicate that OLS is generally outperformed by the competitors.
Indeed, OLS performs similarly as the other methods only for T = 480 and
q = 8 and worse in all the other cases. This �nding suggests that the cost of
ignoring restrictions on � given by (2) is high in a medium-N framework even
when the sample size is large. PLS performs better as both T and q become
larger. In particular, PLS always provides the most accurate forecast when
q = 8. In contrast, PCR often forecasts best when q is small. The performance
of RR depends crucially on the choice of the shrinking parameter �. In general,
the larger is q, the smaller should be �. The methods that appear to bene�t
more from a larger sample size are OLS and PLS.
Overall, PLS appears to be a valid alternative to more well-known forecasting

methods in a medium-N framework, at least when condition (2) is satis�ed. In
the next Section, we evaluate the relative merits of PLS in a empirical exercise.

4 Empirical application

In order to perform our empirical out-of-sample forecasting exercise, we use
the same data-set as Banbura et al. (2010) for their medium dimension VAR
model. It consists of 20 US monthly time series divided in three groups: i)
real variables such as Industrial Production, employment; ii) asset prices such
as stock prices and exchange rates; iii) nominal variables such as consumer
and producer price indices, wages, money aggregates. The time span is from
1959.01 through to 2003.12. We apply logarithms to most of the series with
the exception of those that are already expressed in rates. In order to render
all variables stationary, the same transformations as in Banbura et al. (2010)
are applied, thus obtaining the vector series Yt. Finally, the variables to be
forecasted are Industrial Production (IP), Employment (EMP), Federal Funds
Rate (FYFF), and Consumer Price Index (CPI).
For all the competing methods, the target series is

yht+h =
(1� Lh)
(1� L) yt+h; ; h = 1; 3; 6; 12

where L is the usual lag operator, and the predictors are Xt = [Y 0t ; ::; Y
0
t�p+1]

0.
Along with PLS, PCR and RR, we consider two additional approaches coming
from the large-N literature. The �rst one, labelled as SW, is the Stock and
Watson (2002a, 2002b) dynamic factor model, which computes the h-step ahead
forecast of yh�+h as W

0
�
b�hSW , where Wt = [Z 0� b	q; Y L0t ]0, Yt = [yt; Z

0
t]
0, Y Lt =

[yt; ::; yt�p+1]
0, b	q are the eigenvectors associated with the q largest eigenvalues

of Z 0Z, and Z = [Z1; :::; ZT ]0

The second approach, labelled as GK, is the variant of SW proposed by
Groen and Kapetanios (2008), in which PLS is used in place of the PCs to
extract the relevant factors from Zt. In order to estimate the PLS factors of
Zt and the coe¢ cients of Y Lt , a switching algorithm is used. First, having
�xed the coe¢ cients of Y Lt to an initial estimate, a conditional estimate of the
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PLS factors of Zt is computed. Second, having �xed the PLS factors to their
previously obtained estimates, a conditional estimate of the coe¢ cients of Y Lt
is obtained. These two steps are iterated till numerical convergence occurs.
Finally, for PLS, GK, PCR and SW the regression coe¢ cients �h are es-

timated by generalized least squares, allowing for both heteroskedasticity and
autocorrelation of order (h� 1).
The number of components q to be considered in PLS, PCR, SW and GK,

the shrinking parameter � for RR, as well as the number of lags p to be used in
each method, are �xed by minimizing the 3-step ahead MSFE that is computed
using the training sample 1959.01-1969.12 and the validation sample 1970.01-
1974.12. The maximum values for p and q are, respectively, 13 and 10. Finally,
following De Mol et al (2008), we choose the shrinking parameter among �=N =
[0:5; 1; 2; 5; 10], where N = 20p.
The following tables report the MSFE relative to the naive random walk fore-

cast for all the models considered. In order to take into account the Great Mod-
eration e¤ects, we consider three forecast evaluation samples: 1975.01-2003.12,
1975.01-1984.12 (pre-Great Moderation), 1985.01-2003.12 (post-Great Modera-
tion).
The empirical �ndings suggest that, in each of the three evaluation samples

that we consider, PLS and GK perform similarly and outperform the competi-
tors in most cases. Looking in greater detail at the relative merits of the best
performers, PLS (GK) forecasts better IP and FYFF (EMP), whereas they are
almost equivalent for CPI in the largest evaluation sample. On the basis of
the similar forecasting performances, PLS might be preferred for computational
reasons. Indeed, there are apparently no clear advantages in resorting to the
rather involved iterative scheme suggested by Groen and Kapetanios (2008).
Finally, we notice that it is not always the case that the forecasting per-

formances worse during the Great Moderation. Indeed, whereas IPI and CPI
exhibit lower MSFEs in the period 1975-1984, we reach the opposite conclusion
for EMP and the results are mixed for FYFF, depending on the considered
forecast horizon.

5 Conclusions

In this paper we have examined the forecasting performances of various models
in a medium-N environment. Moreover, we have argued that under the so-
called Helland & Almoy condition (Helland, 1990; Helland and Almoy, 1994),
both PCR and PLS provide estimates of a stable ADL model that are consistent
as T only diverges.
Our Monte Carlo results, obtained by simulating a 20-dimensional VAR(2)

process that satisfy the Helland & Almoy condition, have revealed that PLS
often outperforms the competitors, especially when the sample size T and the
number of the relevant components q become larger.
In the empirical application, we have forecasted, by a variety of competing

models, four US monthly time series using the same variables as in the 20-
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Table 4
IPI, Relative MSFE

Sample: 1975-2003
Models h = 1 h = 3 h = 6 h = 12
PLS 0:821 0:782 0:879 0:899
GK 0:857 0:846 0:963 1:051
PCR 0:828 1:034 1:187 1:357
SW 0:816 1:050 1:184 1:351
RR 0:976 1:013 1:178 1:373

Sample: 1975-1984
Models h = 1 h = 3 h = 6 h = 12
PLS 0:737 0:726 0:834 0:859
GK 0:788 0:803 0:965 1:037
PCR 0:723 0:982 1:131 1:271
SW 0:788 1:033 1:146 1:260
RR 0:897 0:934 1:096 1:269

Sample: 1985-2003
Models h = 1 h = 3 h = 6 h = 12
PLS 0:943 0:881 0:945 0:951
GK 0:959 0:918 0:954 1:063
PCR 0:946 1:119 1:274 1:467
SW 0:854 1:079 1:244 1:468
RR 1:092 1:151 1:302 1:506

Note: MSFE are relative to a Random Walk forecast. PLS forecasts are obtained using p = 12,

q = 2; GK forecasts are obtained using p = 8, q = 3; PCR forecasts are obtained using p = 1, q = 2;

SW forecasts are obtained using p = 2, q = 2; RR forecasts are obtained using p = 1, � = 40.
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Table 5
EMP, Relative MSFE

Sample: 1975 - 2003
Models h = 1 h = 3 h = 6 h = 12
PLS 0:580 0:521 0:670 0:815
GK 0:603 0:516 0:611 0:742
PCR 0:643 1:103 1:437 1:666
SW 0:684 1:099 1:428 1:667
RR 0:656 0:996 1:406 1:672

Sample: 1975 -1984
Models h = 1 h = 3 h = 6 h = 12
PLS 0:601 0:556 0:723 0:850
GK 0:649 0:594 0:709 0:825
PCR 0:651 1:138 1:496 1:771
SW 0:645 1:118 1:474 1:761
RR 0:671 1:035 1:473 1:768

Sample: 1985 - 2003
Models h = 1 h = 3 h = 6 h = 12
PLS 0:539 0:460 0:591 0:771
GK 0:510 0:389 0:470 0:643
PCR 0:628 1:040 1:347 1:530
SW 0:761 1:065 1:357 1:545
RR 0:626 0:929 1:308 1:545

Note: MSFE are relative to a Random Walk forecast. PLS forecasts are obtained using p = 2,

q = 4;GK forecasts are obtained using p = 6, q = 4; PCR forecasts are obtained using p = 2, q = 1;

SW forecasts are obtained using p = 2, q = 4; RR forecasts are obtained using p = 3, � = 60.
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Table 6
FYFF, Relative MSFE

Sample: 1975 - 2003
Models h = 1 h = 3 h = 6 h = 12
PLS 0:760 0:813 0:926 0:898
GK 0:935 1:287 1:043 0:926
PCR 0:867 0:961 0:946 0:935
SW 0:890 0:908 0:912 0:951
RR 1:197 0:960 1:036 0:982

Sample: 1975 -1984
Models h = 1 h = 3 h = 6 h = 12
PLS 0:758 0:828 0:971 0:929
GK 0:925 1:314 1:066 0:969
PCR 0:875 0:971 0:959 0:947
SW 0:885 0:907 0:917 0:972
RR 1:051 0:901 1:018 0:974

Sample: 1985 - 2003
Models h = 1 h = 3 h = 6 h = 12
PLS 0:782 0:681 0:713 0:820
GK 1:051 1:021 0:937 0:823
PCR 0:764 0:873 0:888 0:906
SW 0:931 0:924 0:887 0:899
RR 2:878 1:500 1:118 1:003

Note: MSFE are relative to a Random Walk forecast. PLS forecasts are obtained using p = 2,

q = 3; GW forecasts are obtained using p = 11, q = 2; PCR forecasts are obtained using p = 2,

q = 2; SW forecasts are obtained using p = 2, q = 5; RR forecasts are obtained using p = 9, � = 90.
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Table 7
CPI, Relative MSFE

Sample: 1975 - 2003
Models h = 1 h = 3 h = 6 h = 12
PLS 0:831 0:828 0:663 0:420
GK 0:862 0:804 0:868 0:385
PCR 0:884 0:872 0:711 0:470
SW 0:767 0:808 0:698 0:430
RR 0:958 0:900 0:705 0:452

Sample: 1975 -1984
Models h = 1 h = 3 h = 6 h = 12
PLS 0:768 0:787 0:628 0:401
GK 0:835 0:726 0:578 0:358
PCR 0:829 0:864 0:712 0:483
SW 0:721 0:745 0:670 0:433
RR 0:791 0:756 0:603 0:385

Sample: 1985 - 2003
Models h = 1 h = 3 h = 6 h = 12
PLS 0:909 0:897 0:722 0:455
GK 0:895 0:935 0:867 0:436
PCR 0:953 0:884 0:707 0:445
SW 0:824 0:910 0:742 0:425
RR 1:175 1:135 0:868 0:571

Note: MSFE are relative to a Random Walk forecast. PLS forecasts are obtained using p = 4,

q = 2; GW forecasts are obtained using p = 9, q = 2; PCR forecasts are obtained using p = 10,

q = 1; SW forecasts are obtained using p = 12, q = 1; RR forecasts are obtained using p = 10,

� = 400.
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dimensional VARmodel in Banbura et al (2010). Interestingly, PLS has revealed
to perform similarly as the procedure proposed by Groen and Kapetanios (2008)
and better than other, more well-known, forecasting methods. However, we
emphasize the our PLS approach is computationally less demanding than the
GK switching algorithm.
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