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Abstract 

The paper presents a new model based on the basic Maximum Capture model, 

MAXCAP. The Chance – Constrained Maximum Capture model introduced a 

stochastic threshold constraint, which recognised the fact that a facility can be 

open only if a minimum level of demand is captured. A metaheuristic based on 

the MAX – MIN ANT search procedure together with TABU.-based algorithm 

is presented to solve the model. This is the first time that the MAX – MIN 

ANT system is adapted to solve a location problem. Computational experience 

and an application to a 55-node network are also presented. 
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1. INTRODUCTION 

Up till now, the concept of market threshold has not been used so much in facility location 

decision models. The threshold concept is particularly relevant to retail location, as it is 

widely recognized in the retail literature that states “there is a minimum size of a market 

below which a place will be unable to supply a central good … and is here termed the 

threshold sales level for the provision of that good from the center” (Berry and Garrison, 

1958, p.111, as cited by Shonkwiler and Harris, 1996). In this paper, a new model based on 

the basic Maximum Capture Model ( MAXCAP) formulated by ReVelle (1986) is presented. 

The MAXCAP model seeks  the location of a given number of facilities in a discrete 

network so as to maximize market share captured. The Chance – Constrained Maximum 

Capture model presented in this paper introduces two important modifications that makes the 

model much more realistic: 

� The capture is not just based on proximity. Instead, the capture is determined by the 

gravity model proposed by HUFF (1964)1.  

� Secondly, and new, stochastic threshold constraint is introduced. A facility can be 

open if the probability that total demand assigned to that outlet is above the threshold 

level, is at least a desired probability. 

The paper is organized as follows. Section 2 reviews the literature. Section 3 presents the 

chance – constrained maximum capture model. In Section 4, we developed the metaheuristic 

                                                 
1 Accordingly to this model, each facility has a known attractiveness level, and the probability that a customer 

selects a facility is proportional to its attractiveness and inversely proportional to some power of the distance to 

it.  
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to solve the problem. Section 5 presents some computational experience on different sized 

network. In section 6 an example is presented on a 55-node network. Finally, the conclusions 

are set out in Section 7. 

2. LITERATURE REVIEW 

Competitive Location Literature addresses the issue of optimally locating firms that 

compete for clients in space. The first study of this line is due to Hotelling (1929), where 

consumers were assumed to patronize the closest facility. Different models based on this 

assumption of  consumer behaviour have been developed. The most relevant ones are based 

on Voronoi Diagrams and Location-Allocation models that jointly determine the optimal 

location of service facilities and the allocation of service areas to them (Hodgson (1978)).  

Several lines of work have been developed in this field. The key one for this paper was 

developed by ReVelle (1986). ReVelle and his followers have constructed a group of models 

that examined competition among retail stores in a spatial market. The basic model was the 

Maximum Capture Problem (MAXCAP, ReVelle (1986)). This model selects the location of 

servers for an entering firm which wishes to maximizes its market share; the market is one in 

which competitor servers are already in position. This model has been adapted to different 

situations. The first modification introduced facilities that are hierarchical in nature and 

where there is competition at each level of the hierarchy (Serra, et. al. (1992)). A second 

extension took into account the possible reaction from competitors to the entering firm 

(Serra and ReVelle (1994)). Finally, another modification of the MAXCAP problem 

introduced scenarios with different demands and / or competitor locations (Serra and 

ReVelle (1996)). A good review of these models can be found in Serra and ReVelle (1996). 



 4

All these Competitive Location theories find optimal locations assuming that customers 

patronize the closest shop. Store – Choice literature studies the key variables that 

influences a consumer when deciding where shop as well as the interaction between these 

variables. A good review can be found in Craig, et. al. (1984). Literature on the subject 

reveals that distance is not the only variable consumers take into account when deciding 

where to make their purchase. Eiselt and Laporte (1989) and Santos – Peñate, et. al. (1996)  

have introduced these concepts in the basic MAXCAP model. Recently, Colomé and Serra 

(2000) present an empirical study of the methodology to choose and introduce the key store 

choice attributes in the MAXCAP model. 

Another assumption used in the basic MAXCAP model is the posibility to locate an outlet, 

regardless the level of demand capture. Several authors have recognised that there is a 

demand entry threshold. They have introduced this concept in the facility location decision 

models in different ways.  

Balakrishnan and Storbeck (1991) presents the McTHRESH model. This model addressed 

the issue of locating a given number of outlets so that market coverage was maximised 

within some predetermined range and the required threshold level of demands were 

maintained for all sites. In 1994, Current and Storbeck (1994) formulated a multiobjective 

model that selected franchise locations and identified individual franchise market areas. 

Constraints in their formulation guarantee that all francise locations were assigned at least a 

minimal threshold market area with sufficient demand to ensure economic survival. 

Recently,  Serra, ReVelle and Rosing (1999) presented a decision model for a firm that 

wished to enter a competitive market where several competitors were already located. The 

market was such that for each outlet there was a demand threshold level that had to be 
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achieved in order to survive. In this model, the threshold constraint was deterministic and 

each facility must meet the threshold. 

Finally, Drezner and Drezner (2001)  presented a location model based on the threshold 

concept. They assumed that the buying power at each community over the planning horizon 

was distributed according to some statistical distribution. Assuming that there was a 

minimum market share threshold to be captured, they introduced the threshold in the 

objective function. Their location objective become the minimisation of the probability of 

falling short of the required threshold. 

In this paper, we present a model with a stochastic threshold, but as a constraint. 

3.  THE MODEL 

The basic states that a new firm (from now on Firm A) wants to enter with p facilities in a 

market in order to obtain the maximum capture, given that it has to compete with q existing 

outlets2, and subject to a threshold constraint that is stochastic. The demand of each node ia  

is normally distributed with mean iµ and standard deviation iσ .  

This model studies the location of retail facilities in discrete space. The model take the 

following assumptions: 

� Demand is totally inelastic. 

� The good is homogeneous. 

                                                 

2 These competitors can belong to one or more firms, but without loss of generality it is assumed that there is 

only one competing firm (Firm B) operating in the market; as was assumed by ReVelle (1986). 
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� The threshold level is defined as the minimum expected amount of demand necessary 

to cover costs or as the minimum number of customers required3. 

� Price is set exogenously and consumers bear transportation costs. 

� Under equal conditions, the existing firm captures the demand, following Hakimi 

assumption (1986). 

� The demand of each node is drawn from a multivariate normal distribution. Note that 

according to the central limit theorem, it is not essential for these distribution to be 

normal if there are more that 30 nodes. 

� The distributions of demand of two nodes are positively correlated or either 

uncorrelated (Drezner & Drezner, 2001).  

� We use the simple gravity model to define the capture. According to these models, 

“the probability that a consumer patronises a shop (or the proportion of demand 

capture form a node by one shop) is proportional to its attractiveness and inversely 

proportional to a power of distance to it” (Reilly, 1929). In this paper, we used the 

simple HUFF model4 (Huff, 1964).   

                                                 

3 Demand thresholds are usually measured in terms of population required to support one firm (Shonkwiler and 

Harris, 1996). 

4 The Huff probability formulation uses distance (or travel time) from consumer’s zones to retail centers and 

the size of retail centers as inputs to find the probability of consumers shopping at a given retail outlet. He was 

also the first one to introduce the Luce axiom of discrete choice4 in the gravity model. Using this axiom, 

consumers may visit more than one store and the probability of visiting a particular store is equal to the ratio of 

the utility of that store to the sum of utilities of all stores considered by the consumers.  
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The integer programming formulation of the Chance – Constrained Maximum Capture 

Location problem is as follows: 
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Where the parameters are: 

i I, =  Index and set of consumers’ zones or nodes (1,…, m). 

 j J, = Index and set of potential locations for shops (1,…,n).. 

 p =  Number of facilities to locate 

 dij =  The network distances between consumers’ zone i and a shop in j. 
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ρ ij  = The probability that consumers at location i will shop at shop j. (i.e., The 

proportion of capture that a shop in j will achieve by consumers’ zone i), based on 

HUFF model 
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 where  jA  = The attractiveness of shop j (as in HUFF, the size of the shop)  

  =β Distance decay parameter (as in HUFF, is equal to 2) 

 T =  Threshold demand level 

 α  = Desired probability of satisfying the threshold level 

 ai =  Demand at consumers’ zone i (unknown). 

iµ  = Mean of ia  

iσ = Standard deviation of ia  

And the variables are defined as follows: 

 xij = 1, if consumers’ zone i is assigned to node j; 0, otherwise. 

 x jj =  1, if a shop of firm’s A is opened at node j; 0, otherwise. 

The constraint set basically that: constraint set (1) states that every consumer zone makes p 

+ q assignments to the p new and q existing outlets. But for a demand node i to be assigned 

to a facility at j, there has to be a facility open at j; this is achieved by constraint set (2). The 

third group of constraints allows a facility to open at j only if the probability that the total 



 9

demand assigned to node j was above than the threshold level, is at least the desired 

probability of satisfying this required threshold level. Finally, constraint (4) sets the number 

of outlets to be opened by the entering firm. 

The objective function defines the total capture that the entering firm can achieve with the 

sitting of its p servers. 

A deepest analysis of the deterministic equivalent of constraint set (3) states that:  
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Then, constraint set (3) in general is a non-linear constraint. 

This non-linearity of the constraint set (3) don’t allow to solve the model using the 

traditional methods of linear programming and branch and bound. Then,  a metaheuristic 

model is used to solve it. 

4. METAHEURISTIC TO SOLVE THE MODEL 

The model presented in the previous section is a combinatorial optimisation problem. Many 

combinatorial problems are intractable and belong to the class of NP-Hard (non-

deterministic polynomial-time complete) problems. Kariv and Hakimi (1979) prove that the 

p-Median problem is a NP-Hard problem on a general graph. Moreover, in this case, the 

inclusion of a non-linear constraint reinforce the NP-Hard condition of the problem. 

The common belief in this field is that no efficient algorithm could ever be found to solve 

these inherently hard problems. Heuristics, and recently metaheuristics are considered one of 

the search methods for solving hard combination optimisation problems. 

The basic families of metaheuristics are: genetic algorithms, greedy random adaptive search 

procedures, problem-space search, simulated annealing, tabu search, threshold algorithms 

and heuristic concentration (good review can be found in Osman (1995)). 

 

Lourenço and Serra (2000) present new metaheuristics for the Generalised Assignment 

Problem. The best result was found using a MAX-MIN ANT SYSTEM + TABU SEARCH. 

In this paper, we are going to adapt this best metaheuristic to our location problem.  

 

The Ant System  

The Ant System introduced by Colorni, Dorigo and Maniezzo (1991a, 1991b), Dorigo et al. 

(1996), Dorigo and Di Caro (1999), is a cooperative search algorithm inspired by behavior of 
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real ants. Ants lay down in some quantity an aromatic substance, known as pheromone, on 

their way to food. An ant chooses a specific path in correlation with the intensity of the 

pheromone. The pheromone trail evaporates over time if no more pheromone is laid down by 

other ants, therefore the best paths have more intensive pheromone and higher probability of 

being chosen. The Ant System approach associates pheromone trails to features of the 

solutions of a combinatorial problem, and can be seen as a kind of adaptive memory of the 

previous solutions. Solutions are iteratively constructed in a randomized heuristic fashion 

biased by the pheromone trails left by the previous ants. The pheromone trails, jτ , are 

updated after the construction of a solution, ensuring that the best features will have a more 

intensive pheromone.  

Recently, Stützle (1997) have proposed an improved version of the Ant System, designated 

by MAX-MIN Ant System. The MAX-MIN ant system differs from the Ant System in the 

following way: only the best ant updates the trails in every cycle. To avoid stagnation of the 

search, i.e. ants always choosing the same path, Stüzle (1998a) proposed a lower and upper 

limit to the pheromone trail, minτ  and maxτ , respectively.   

Stützle and Hoos(1999), Stützle (1997,1998a) applied this procedure to Traveling Salesman 

Problem, Quadratic Assignment Problem and Flow-Shop Scheduling Problem. Lourenço and 

Serra (2000) applied to the Generalised Assignment Problem. 

Until now, the MAX-MIN ant system has not been applied to any location problem. In this 

paper, we propose a MAX-MIN Ant System with Local Search for the Chance – 

Constrainted Maximum Capture Location Model .  
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In our metaheuristic, we define jτ  as the desirability of locating a shop in j. Initially, 

∑
=

=
m

i ij

j
j

d

A

1
λτ . The more attractive the index of a shop in j is, the more desired is the location of 

an outlet in that node. 

In the first step of the iteratively procedure of the MAX-MIN Ant System, a initial solution 

is constructed. To do this, the nodes are ordered with respect to the probability function 

defined by 
∑
=

=
n

l
l

j
jp

1
τ

τ
. The initial solution is choose randomly, taking into account the 

probability distribution defined previously. 

The second step of the iteratively procedure tries to improve this initial solution by a local 

search method; specifically, Teitz and Bart heuristic. In both steps, only feasible solutions 

are allowed. 

Finally, in the third step of the iteratively procedure, the pheromone trails are updated using 

the current solution, in the following way: j
old
j

new
j τρττ ∆+= , where ρ , 0 < ρ < 1, is the 

persistence of the trail, i.e. 1 - ρ , represents the evaporation. 

The updated amount is =∆ jτ    otherwise 0, j;in  located isoutlet an  if *max Qτ . Finally, the MAX-

MIN limits were imposed jj ∀≤≤ ,maxmin τττ , if the updated pheromone falls outside the 

interval. The values of the parameters of the metaheuristic were set to Q = 0.05, ρ = 0.75, 

jp ττ max*max =  and jp ττ min*)/1(min =  (where, p is the number of outlets to locate). 

The termination condition of this iteratively procedure is the number of total iterations (in 

this case, 30 iterations). 

Tabu Search 



 14

In essence, Tabu Search (Glover, 1989,1990) explores a part of the solution space by 

repeatedly examining all neighbourhoods of the current solution, and moving to the best 

neighbourhood even if this deteriorates the objective function. This approach tries to avoid 

being trapped in a local optimum. In order to avoid the cycling solution that has recently 

been examined, nodes are inserted in a tabu list that is constantly updated. Additionally, 

several criteria of flexibility can be used in the tabu search including aspiration,  

intensification, diversification and stopping criteria.  

This method has been successfully applied to a wide variety of location problems: p-hub 

location problems (Klincewicz (1992) and Marianov, et.al. (1997)),  (r | Xp)- Medianoid and 

(r | p)- Centroid Problems (Benati and Laporte (1994)), the Vehicle Routing Problem 

(Gendreau, et.al. (1994)) and p-Median problem (Rolland, et.al. (1996)). 

We have followed BENATI and LAPORTE (1994) application of Tabu Search. In their 

application, an aspiration criteria and a diversification criteria were applied   

 

Summing up, the structure of the metaheuristic applied in this paper is the following: 

MAX-MIN ANT SYSTEM + TABU SEARCH 

MAX-MIN ANT SYSTEM 

1. Initialise the pheromone trails and parameters. 

2. While (termination condition is not met), 

2.1. Construct a solution using the Ant System Heuristic.  

In the first iteration initialise Xb, the best solution. 

2.2. Apply local search (x). 

Here, the termination

condition is the number

of total iterations  
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2.3. Update the pheromone trails using the current solution x. 

2.4. If x is feasible and f(x) > f(xb), let xb=x. 

3. Return the best solution found; xb. 

TABU SEARCH 

3. Apply TABU SEARCH 

3.1. Generate an initial solution x (in this case, take the best solution found in 2). 

3.2. While the stopping criteria is not met do: 

3.2.1. Generate the candidate list of moves / neighbourhoods. 

3.2.2. Choose the best neighbour not tabu or verifying the aspiration criteria, x’; 

3.2.3. Update the current solution x = x’. 

3.3. Output the best solution found. 

5. COMPUTATIONAL EXPERIENCE 

The algorithm has been applied to several randomly generated networks, having the number 

of nodes n equal to 35, 50 and 70. For each n, three different threshold level C were set using 

the following formula: ( )





+= qp
popC β , where pop is the total amount of demand to be 

served, defined as  ∑=
i

ipop µ ; and β is a threshold factor that was set to 0.1, 0.2 and 0.35. 

For the threshold constraint, we assumed α = 95% ⇒ =−α1Z -1.645 (because, one-tailed test 

(left-tailed test) is applied). 
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We assume that there are five existing outlets. For each generated network, the location of 

the five existing outlets were found using the Teitz and Bart heuristic with a weighted total 

distance objective (i.e., minimised weighted by the population / demand of each node). 

For each n, and each C, three different numbers of outlets of the entering firm were used; p  

= 2,3,4.  

In this case, to generate the networks, the distributions of the demand nodes need to be 

established. In this case, we assume that the demand nodes follow a multivariate normal 

distribution  ),( 2
iii Na σµ≈ . This distribution will be established in the following way: 

100)- (50  uniformi =µ   and   ( )0.8)- (0.2  
4

2 uniformi
i

µ
σ = . We also give a priori value to the 

correlation between different demand nodes. This can be either unrelated or positively 

related (i.e., 0.1or  0=r , as in Drezner and Drezner 2001) 

Finally, we also need to pre-establish the value of the attractiveness of each shop 

( (60,100)  uniformAi = ).  It can be assumed that the attractiveness level represents the size of 

the shops . 

Summing up, for each n, each  β  , each p and each r; ten networks were randomly 

generated. Therefore, a total of 540 networks were generated.  

Optimal solutions were obtained using complete enumeration. The heuristic was 

programmed in FORTRAN and executed in Pentium III 450 Mhz with 128 mb of RAM. 

Results of heuristic performance are shown in table 1 and 2.  

 

 

                                                                                                                                                       

5 The computation of C is made a posteriori, when the distribution of the demand nodes is determined. 
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Table 1. Heuristic Performance (r = 0) 

n ββββ (p,q) Optimal 
Solutions

Lack of 
solution

Max-Min Average 
Deviation (%) 

Total Average 
Deviation* (%)

2,5 100% 5,10% 0,00%

3,5 100% 6,91% 0,00%

0,1 

4,5 70%  8,52% 1,29%

2,5 90% 4,57% 1,05%

3,5 80% 8,13% 2,02%

0,2 

4,5 80%  7,82% 1,13%

2,5 100% 2,26% 0,00%

3,5 90% 6,30% 0,42%

35 

0,3 

4,5 70%  9,16% 2,90%

2,5 100% 4,29% 0,00%

3,5 100% 4,29% 0,00%

0,1 

4,5 70%  7,41% 2,15%

2,5 90% 4,05% 1,70%

3,5 80% 4,47% 1,46%

0,2 

4,5 70%  6,80% 2,04%

2,5 100% 1,54% 0,00%

3,5 90% 6,05% 1,40%

50 

0,3 

4,5 70%  6,23% 1,06%

2,5 90% 1,50% 0,10%

3,5 80% 1,71% 1,20%

0,1 

4,5 70%  4,99% 0,49%

2,5 90% 1,01% 3,30%

3,5 90% 1,58% 1,90%

0,2 

4,5 70%  5,90% 0,49%

2,5 90% 1,28% 1,27%

3,5 90% 2,59% 1,72%

70 

0,3 

4,5 70%  3,65% 0,91%
 * For non-optimal solutions    
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Table 2. Heuristic Performance (r = 0.1) 

n ββββ (p,q) Optimal 
Solutions

Lack of 
solution

Max-Min Average 
Deviation (%) 

Total Average 
Deviation* (%)

2,5 100% 5,41% 0%

3,5 80% 5,67% 2,36%

0,1 

4,5 80%  8,56% 1,11%

2,5 100% 4,85% 0%

3,5 100% 8,27% 0%

0,2 

4,5 70%  5,87% 1,66%

2,5 90% 4,58% 3,39%

3,5 100% 6,34% 0%

35 

0,3 

4,5 80%  8,92% 0,86%

2,5 100% 1,91% 0%

3,5 90% 6,03% 0,42%

0,1 

4,5 70%  5,81% 1,24%

2,5 90% 3,15% 0,78%

3,5 80% 4,94% 3,81%

0,2 

4,5 70%  5,44% 2,23%

2,5 100% 20% 21,94% 0%

3,5 90% 30% 1,88% 0,36%

50 

0,3 

4,5 80% 20% 23,36% 0,62%

2,5 100% 0,36% 0%

3,5 80% 10% 2,89% 1,23%

0,1 

4,5 70% 20% 2,77% 2,31%

2,5 100% 40% 0,21% 0%

3,5 90% 70% 1,99% 0,73%

0,2 

4,5 100% 100% 0% 0%

2,5 100% 100% 0% 0%

3,5 100% 100% 0% 0%

70 

0,3 

4,5 100% 100% 0% 0%
 * For non-optimal solutions    
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The percentages of optimal solutions are presented in the column labelled “optimal 

solutions”. If at least a no optimal solution is found among the ten runs, the average 

deviation from optimality in both stages of the metaheuristic are presented at the two last 

columns. In this case, it can be noticed that the stochastic condition of the model arises the 

difficulty to find the optimal solutions. With the metaheuristic, a near-optimal solutions were 

found with a minimal deviation. 

� r = 0.  41 out of 270 runs were non-optimal based on our comparison with complete 

enumeration. The maximum average deviation form optimality did not exceed 3.3 %. 

� r = 0,1.  29 out of 270 runs were non-optimal based on our comparison with 

complete enumeration. The maximum average deviation form optimality did not 

exceed 3.9 %. 

In both tables, an additional column has been included. The column “lack of solution” 

represents the percentages of cases without a solution; in other words, a network where the 

entering firm cannot find a solution that satisfied all the constraints; included the threshold 

constraint. It can be noticed that this lack of solution appears in table 2 with an r = 0.1. We 

can deduce, from previous models without the stochastic threshold constraint, that this 

constraint is the one no satisfy in these cases. A statistical interpretation of this fact states 

that a greater r implies a greater Sj , and as K1-α is negative, the threshold constraint is more 

difficult to achieve. An economic interpretation of this output could be the following: 

correlation between demand nodes can be interpreted as that a higher demand power of one 

node implies a higher demand power of the others nodes. In this scenario, the established 

firm will capture more demand, by our initial assumption, and then, the entering firm will 

have more problems to find its outlets locations which satisfy the threshold constraint.   

Tables 3 and 4 show the average execution time in seconds spend per phases by global 

metaheuristic and per enumeration procedure. 
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Table 3. Time Performance (r = 0)  

n ββββ (p,q) Max-Min 
Average Time

TABU Average 
Time 

TOTAL  
Average Time  

Enumeration 
Average Time

(2,5) 0,20 1,34 1,55 0,44

(3,5) 0,34 3,08 3,42 7,80

0,1 

(4,5) 0,36 5,51 5,87 86,58

(2,5) 0,36 1,34 1,70 0,46

(3,5) 0,32 3,11 3,43 7,78

0,2 

(4,5) 0,33 5,60 5,93 86,59

(2,5) 0,19 1,33 1,52 0,46

(3,5) 0,35 3,07 3,42 7,79

35 

0,3 

(4,5) 0,38 5,61 5,99 86,60

(2,5) 1,14 2,31 3,45 1,62

(3,5) 1,16 5,44 6,60 40,40

0,1 

(4,5) 1,42 10,00 11,41 659,86

(2,5) 0,60 2,29 2,88 1,60

(3,5) 0,91 5,38 6,29 40,39

0,2 

(4,5) 1,77 9,86 11,63 659,84

(2,5) 0,74 2,30 3,04 1,61

(3,5) 1,01 5,38 6,39 40,39

50 

0,3 

(4,5) 1,08 9,70 10,77 659,78

(2,5) 4,02 3,96 7,98 5,41

(3,5) 8,33 9,18 17,50 192,03

0,1 

(4,5) 8,52 16,65 25,17 4458,96

(2,5) 2,66 3,93 6,59 5,40

(3,5) 5,11 9,14 14,25 191,70

0,2 

(4,5) 5,03 16,41 21,44 4451,67

(2,5) 3,44 3,96 7,40 5,40

(3,5) 4,29 9,25 13,53 191,76

70 

0,3 

(4,5) 11,82 16,88 28,70 4452,62
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Table 4. Time Performance (r = 0.1)  

n ββββ (p,q) Max-Min 
Average Time

TABU Average 
Time 

TOTAL  
Average Time  

Enumeration 
Average Time

(2,5) 0,23 1,33 1,55 0,46

(3,5) 0,57 3,08 3,64 7,80

0,1 

(4,5) 0,37 5,62 5,99 86,58

(2,5) 0,28 1,31 1,60 0,47

(3,5) 0,32 3,13 3,45 7,80

0,2 

(4,5) 0,51 5,55 6,06 86,59

(2,5) 0,22 1,32 1,55 0,45

(3,5) 0,45 3,08 3,53 7,80

35 

0,3 

(4,5) 0,57 5,64 6,21 86,64

(2,5) 1,66 2,31 3,97 1,61

(3,5) 1,11 5,31 6,42 40,39

0,1 

(4,5) 1,50 9,83 11,33 660,78

(2,5) 1,17 2,31 3,48 1,62

(3,5) 1,74 5,16 6,90 40,39

0,2 

(4,5) 3,35 9,67 13,01 659,72

(2,5) 2,42 2,16 4,58 1,61

(3,5) 2,85 4,99 7,84 40,40

50 

0,3 

(4,5) 4,16 8,97 13,13 659,98

(2,5) 5,70 3,76 9,46 5,39

(3,5) 9,75 8,47 18,22 191,98

0,1 

(4,5) 14,12 16,56 30,68 4463,64

(2,5) 8,96 3,53 12,49 5,40

(3,5) 12,30 7,74 20,05 191,66

0,2 

(4,5) 18,12 14,02 32,13 4459,10

(2,5) 8,12 3,40 11,52 5,42

(3,5) 13,66 7,74 21,40 191,67

70 

0,3 

(4,5) 17,87 13,98 31,85 4459,01
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The average computing time of the heuristic is similar, maintaining the others parameters 

equal, for a network assuming r = 0 and r =0,1. The average computing time of the heuristic 

increased with the number of nodes and the number of outlets, as expected.  Notice that the 

algorithm becomes very useful when we have to locate 3 or more entering outlets, regardless 

of the constraint level. In these cases, the time spent by the algorithm is less than the one for 

the enumeration procedure. For example, in n = 70, p = 4 and β =0.2, the time spent by the 

algorithm is 21.44 seconds while the enumeration procedure spent 4451.67 seconds to find 

the same solution. 

6. AN EXAMPLE 

The model was also tested in the well-known Swain’s (1974) 55-node network, see Figure 

A1 of the appendix.  The demand at each node follows a multivariate normal distribution, 

considering: =iµ   the original demand of the Swain’s network indicated in Table A1 of the 

appendix, and ( )0.8)- (0.2  
4

2 uniformi
i

µ
σ = . In this case, the total amount of demand to be 

captured is not always equal to 3.575.   

We also need to pre-establish the value of the attractiveness of each shop. In this case, we 

assume that all the shops have the same attractiveness,  ( 100=iA ), regardless of node and 

ownership. 

The model was solved to optimality by using complete enumeration. As in the previous 

section, the location of the five existing outlets were found using the Tetiz and Bart heuristic 

with the weighted total distance objective.  

For the example, different scenarios were examined; which varies with respect to the number 

of outlets to be located by Firm A (p = 2, 3 and 4), and to the threshold level C: 

( )





+= qp
popC β  (where pop is the total amount of demand to be served; i.e.,  ∑=

i
ipop µ and 

=β 0.3, 0.5 and 0.7). Results are shown in table 5, 6 and 7. 
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The locations and percentage6 of demand captured by Firm B are computed before and after 

the entering of Firm A locates its outlets (using as objective function the one of the Chance – 

Constrained Maximum Capture Location Problem). Firm’s A optimal locations and its 

percentage of demand capture are also computed. Additionally, the following values are also 

computed for each scenario: 

 

� % Capture > T = ( ) 100*
levelThreshold

level Threshold - Capture ; the percentage of capture above 

the threshold level achieve by each Firm’s A location. 

�  % Constraint A. = 100*
Level

Level 1
1

Thershold

ThresholdSKx j
m

i
ijiji 










−+ −

=
∑ αρµ

; the percentage 

of threshold constraint accomplishment. 

 

Note that the percentage of capture above the threshold level measure the 

accomplishment of the threshold constraint in the actual event. While the percentage of 

threshold constraint accomplishment measures this value in the general characteristics of 

the market. 

 

 

 

 

 

                                                 

6 Note that the percentage of demand captured is computed instead the total amount because the scenario is 

stochastic; i.e. the total demand varies from one to other scenario. In this way, it is easy the comparison 
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Table 5. 55-nodes example (r = 0 and ββββ=0,3) 

ββββ (p,q) 
Firm's B 
Location 

Initial 
Capture 

Final 
Capture 

Firm's A 
Location Capture 

% Capture 
> T 

% Constraint 
A. 

0,3 (2,5) 17 16% 14% 4 18% 311% 240%

  41 22% 13% 5 12% 178% 228%

  38 13% 12%         

  31 18% 16%         

  5 30% 15%         

  Total Capture 100% 70%   30%     

 (3,5) 12 12% 10% 4 15% 316% 284%

  41 22% 12% 5 13% 243% 243%

  38 14% 11% 31 11% 210% 209%

  31 21% 13%         

  5 31% 15%         

  Total Capture 100% 61%   39%     

 (4,5) 17 13% 11% 3 11% 234% 245%

  25 25% 10% 4 14% 327% 266%

  38 12% 9% 5 11% 233% 238%

  3 25% 14% 25 8% 137% 150%

  5 25% 14%         

    Total Capture 100% 57%   43%     

 

                                                                                                                                                       
between scenarios.  
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Table 6. 55-nodes example (r = 0 and ββββ=0,5) 

ββββ (p,q) Firm's B Location 
Initial 

Capture 
Final 

Capture 
Firm's A 
Location Capture 

% Capture 
> T 

% Constraint 
A. 

0,5 (2,5) 22 16% 13% 3 17% 136% 94%

  25 21% 14% 5 15% 109% 124%

  38 11% 10%         

  31 21% 14%         

  6 31% 18%         

  Total Capture 100% 69%   31%     

 (3,5) 16 16% 11% 3 11% 75% 91%

  41 25% 12% 4 14% 141% 110%

  23 15% 11% 5 14% 130% 100%

  3 18% 13%         

  2 25% 14%         

  Total Capture 100% 61%   39%     

 (4,5) 22 17% 11% 3 13% 127% 96%

  20 17% 10% 4 15% 160% 124%

  31 24% 11% 5 10% 69% 107%

  38 11% 9% 31 9% 64% 74%

  5 32% 13%         

    Total Capture 100% 54%   46%     
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Table 7. 55-nodes example (r = 0 and ββββ=0,7) 

ββββ (p,q) Firm's B Location 
Initial 

Capture 
Final 

Capture 
Firm's A 
Location Capture 

% Capture 
> T 

% Constraint 
A. 

0,7 (2,5) 12 10% 9% 5 18% 79% 77%

  25 20% 14% 31 12% 24% 29%

  31 24% 15%         

  38 14% 12%         

  5 32% 20%         

  Total Capture 100% 70%   30%     

 (3,5) 22 19% 13% 4 16% 79% 62%

  25 21% 12% 5 11% 28% 51%

  43 11% 10% 31 11% 22% 25%

  31 20% 13%         

  5 28% 14%         

  Total Capture 100% 62%   38%     

 (4,5) 22 19% 12% 3 14% 83% 53%

  20 15% 10% 4 14% 82% 65%

  38 11% 9% 5 11% 44% 54%

  18 19% 10% 18 8% 4% 19%

  5 36% 14%         

    Total Capture 100% 54%   46%     

 

From the previous tables, we can point out the following: 

� The percentage of total demand achieved by the entering firm is the same for a given 

number of outlets located, regardless threshold level. For example, when the entering 

firm locates 3 outlets, it captures the 39%, 39% and 38% of total demand, with 

β=0,3, 0,5 and 0,7 respectively.  

� Obviously, the percentage of capture above the threshold level  and the percentage of 

threshold constraint accomplishment achieve by each Firm’s A, decrease with an 

increase of  β value. 
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7. CONCLUSIONS 

In this paper, a new location model have been presented to study the issue of minimum 

requirements to survive in a given spatial setting. The threshold requirement has been 

introduced as an stochastic constraint. A metaheuristic based on MAX – MIN Ant System 

and TABU system has been used to solve the new model. It is the first time that the MAX – 

MIN Ant system is adapted to solve a location problem.  

The model is particularly relevant to private retail sector setting because it takes into account 

two real characteristics of the market. First of all, the capture is determined by a gravity 

model, which is a revealed preference model. And secondly, the model included a threshold 

constraint which reflex the fact that a facility cannot be open if the demand captured is below 

a threshold level.  



 28

REFERENCES 

- Balakrishnan and Storbeck. “Mctresh: Modeling Maximum Coverage with Threshold 

Constraint”, Environment & Planning B, 18, 1991, pp. 459-472. 

- Benati, S and Laporte, G. “Tabu Search algorithms for the (r | Xp)- Medianoid and (r | p)-

Centroid Problems“. Location Science, 2(4), 1994, pp. 193-204. 

- Berry, Brian J. and William Garrison. “Recent developments of Central Place Theory”. 

Papers and Proceedings of the Regional Science Association, 4, 1958, 107-120. 

- Colomé, R. and Serra, D. “Supermarket Key Attributes and Location Decisions: A 

Comparative Study between British and Spanish Consumers”, Economic and Business 

working paper 469, June 2000, Pompeu Fabra University, Barcelona, Spain. 

- Colorni, Dorigo and Maniezzo. “Distributed optimisation by Ant Colonies”, Proceeding 

of ECAL91 – European Conference on Artificial Life: Elsevier Publishing, Paris, France, 

1991, pp. 134-142. 

- Colorni, Dorigo and Maniezzo. “The Ant System: Optimisation by a Colony of 

Cooperating Agents”, IEEE Transactions on Systems, Man and Cybernetics – Part B, 26, 

1, 1991, pp. 29-41. 

- Craig, C.S., Ghosh, A and McLafferty, S. “Models of the Retail Location Process: A 

Review”. Journal of Retailing, v60, n1, Spring 1984, p5-36. 

- Current and Storbeck. “A Multiobjective Approach to Design Franchise Outlet 

Networks”, Journal of Operational Research Society, 45, 1994, pp.71-81. 

- Dorigo, Di Caro. “The ant colony optimization meta-heuristic”. In D.Corne, M.Dorigo 

and F.Glover (eds), News Ideas in Optimisation, 1999, MsGraw-Hill. 

- Dorigo, Maniezzo and Colorni. “The ant system: Optimisation by a colony of 

cooperating agents”, IEEE Transactions on Systems, Man and Cybernetics – Part B, 

26(1), 1996, pp. 29-42. 

- Drezner and Drezner. “A Threshold – Satisfying Competitive Location Model”. 2001   

- Huff, D. “Defining and Estimating a Trading Area“. Journal of Marketing 28, 1964, 34-

38. 



 29

- Eiselt, H.A. and Laporte, G. (1989) “The Maximum Capture Problem in a Weighted 

Network“. Journal of Regional Science 29(3),  433-439.  

- Glover. F. “Tabu Search, part I“. ORSA Journal of Computing, 1, 1989, 190-206 

- Glover. F. “Tabu Search, part II“. ORSA Journal of Computing, 2:, 1990, 4-32. 

-  Gendreau, M.; Hertz, Z. and Laporte, G. (1994) “A Tabu Search Heuristic for the 

Vehicle Routing Problem“. Management Science 40(10), 1276-1289. 

- Hakimi, S.L. “P-median theorems for competitive location”. Annuals of Operation 

Research, 5; 1986, 79-88. 

-  Hodgson, M.J. (1978) “Toward more realistic allocation in location-allocation models: 

an interaction approach“. Environment and Planning A 10, 1273-1285. 

- Hotelling, H. “Stability in Competition”, Economic Journal, 1929, Vol. 39, pp 41-57. 

- Klincewicz, J.G. “Avoiding Local Optima in the p-Hub location problem using Tabu 

Search and GRASP“. Annals of Operations Research, 40 (1992) 283-302 

- Lourenço and Serra. “Adpative Search Heuristics for The Generalised Assignment 

Problem”. Working Paper 2001. 

- Marianov, V.; Serra, D.; and ReVelle, C. “Location of Hubs in a Competitive 

Environment“.European Journal of Operational Research, 114, 1999, 363-371. 

- Reilly, William J. “The law of Retail Gravitation“. 1929. New York. Knickerbocker 

Press. 

- ReVelle, Charles. “The Maximum Capture or “ Sphere of Influence” Location problem: 

Hotelling revisited on a Network “. Journal of Regional Science, Vol.26, nº2, 1986. 

- Rolland, E.; Schilling, D.A. and Current, J.R. “An efficient Tabu Search procedure for 

the p-Median problem“. European Journal of Operation Research 96(2). 329-342 

(1997). 

- Santos-Peñate, D.R.; Suárez-Vega, R. and Dorta-González, P. “Localización competitiva 

con criterios basados en funciones de atracción”. XXIII Congreso Nacional de 

Estadística e Investigación Operativa. Valencia 11-14 de marzo de 1997. 

- Serra, D. Marianov, V. and ReVelle, C. “The Hierarchical Maximum Capture Problem“ . 

European Journal of Operational Research, 1992, 62, 3. 



 30

- Serra,D. and ReVelle, C. “Market Capture by two Competitors: The Preemptive 

Location Problem“. Journal of Regional Science, 1994, Vol. 34, nº4, pp.549-561. 

- Serra, D.; Ratick, S and ReVelle, C. “The Maximum Capture problem with uncertainty”. 

Environment and Planning B, 1996, 62 : 49-59. 

- Serra, D and ReVelle, C. “Competitive Location on  networks”, in Z. Drezner (ed.): 

“Facility Location. A survey of Applications and Methods”, 1996, Springer. 

- Serra, ReVelle and Rosing. “Surviving in a Competitive Spatial Market: The Threshold 

Capture Model”. Journal of Regional Science, Vol. 39, nº4, 1999, pp. 637-652. 

- Shonkwiler, John and Thomas Harris. “Rural Retail Business Thresholds and 

Interdependencies”, Journal of Regional Science, 36, 1996, 617-630.  

- Stüzle. “MAX-MIN Ant System for the Quadratic Assignment Problem”. Technical 

Report AIDA-97-4, 1997, FG Intellektik, TU Darmstadt, Germany. 

- Stüzle. “Local Search Algorithms for Combinatorial Problems – Analysis, 

Improvements, and New Applications”. PhD thesis, Department of Computer Science, 

Darmstadt University of Technology, Germany, 1998. 

- Stüzle. “An ant approach for the flow shop problem”. In proceeding of the 6th European 

Congress on Intelligent Techniques & Soft Computing (EUFIT’98), 3,  1998, 1560-1564. 

- Stüzle and Hoos. “Max-Min Ant System and Local Search for Combinatorial 

Optimisation”, in S.Voβ, S. Martello, I.H. Osman and C. Roucairol (eds.), Meta-

Heuristics: Trends in Local Search paradigms for Optimisation, 1999, Kluwer Academic 

Publishers, pp. 313-329. 



 31

APPENDIX 

Table A1. 55-Node Demand of Swain’s (1974) Network. 

Node Demand Node Demand Node Demand 

1 120 20 77 39 47 

2 114 21 76 40 44 

3 110 22 74 41 43 

4 108 23 72 42 42 

5 105 24 70 43 41 

6 103 25 69 44 40 

7 100 26 69 45 39 

8 94 27 64 46 37 

9 91 28 63 47 35 

10 90 29 62 48 34 

11 88 30 61 49 33 

12 87 31 60 50 33 

13 87 32 58 51 32 

14 85 33 57 52 26 

15 83 34 55 53 25 

16 82 35 54 54 24 

17 80 36 53 55 21 

18 79 37 51   

19 79 38 49   

 

 

 

 

 

 


