

Dynamic Mixed Duopoly: A Model Motivated by
Linux vs. Windows*

Ramon Casadesus-Masanell+ Pankaj Ghemawat++

August 20, 2003

Abstract

This paper analyzes a dynamic mixed duopoly in which a profit-maximizing
competitor interacts with a competitor that prices at zero (or marginal cost), with the
cumulation of output affecting their relative positions over time. The modeling effort is
motivated by interactions between Linux, an open-source operating system, and
Microsoft’s Windows in the computer server segment, and consequently emphasizes
demand-side learning effects that generate dynamic scale economies (or network
externalities). Analytical characterizations of the equilibrium under such conditions are
offered, and some comparative static and welfare effects are examined.

* We thank Miguel Angel García Cestona, Fabio Maneti, Patrick Moreton, and seminar participants at NYU,

the 2003 Strategy Research Forum held in Washington University, St. Louis, the 1st Meetings of the International
Industrial Organization Society, held in Boston, and the 2003 Society for the Advancement of Economic Theory
(SAET) conference, held in Rodos, for useful comments.

+ IESE and Harvard Business School.
++ Harvard Business School.

 1

I. Introduction

Mixed duopoly refers, in this paper, to the interactions between a not-for-profit

competitor and a for-profit competitor. While this formalization is motivated by the case
of Linux vs. Windows that is described below, asymmetry with respect to profit
maximization also seems focal in the sense of representing the most obvious modification
to the standard assumption of symmetric profit maximization. Specifically, it is assumed
that the not-for-profit player prices its product at zero (or at marginal cost) and that the
for-profit player must take that commitment as given in making its own pricing decisions.
The stylization evokes not only interactions between open source software development
efforts (of which Linux is one of many) and their for-profit competitors (of which
Microsoft is one of many) but aspects of a number of other types of interactions as well.
These include interactions between a profit-maximizer and a competitor pursuing volume
or market share by pricing at marginal cost, between profit-maximizers and much more
patient competitors, between private and state-owned/supported enterprises (e.g., Boeing
vs. Airbus, in the official U.S. view), between for-profit firms and nonprofits or even the
social sector, broadly defined (e.g., between pharmaceutical firms and universities in the
life sciences—although those relationships involve complementarities and side-payments
as well as somewhat fragmented competition), and between practice and research more
generally (e.g., between management consulting firms and business schools—which also
involve cooperation and competition in fragmented settings). As a first cut at pushing
forward from the present state of analysis of mixed duopolies, this paper focuses on the
case in which the relationships between the two players are basically competitive (e.g., as
in Linux vs. Windows), but bringing cooperative relationships into the picture would be
an obvious and important next step.

Previous theoretical analyses of mixed duopolies, as defined above, have mostly

been static. The prototypical model of this sort analyzes competition between a profit-
maximizer and a sales-maximizer and confirms that if their products are substitutes, the
profit-maximizer fares worse, in terms of both volume and prices, than it would if it were
facing another profit-maximizer (as in the standard set-up). Specifically, if the sales-
maximizer prices at zero or at a common marginal cost, the profit-maximizer can make
positive operating profits only to the extent that the two’s products are imperfect
substitutes for each other. Especially since the sales-maximizer’s volume is predicted,
ceteris paribus, to be higher than the profit-maximizer’s, might the former might
somehow displace or push out the latter from the market? That and a number of other
questions (e.g., welfare implications, comparative statics) animate the explicitly dynamic
model of mixed duopoly presented in this paper.

There are a number of interesting ways in which one might add some dynamics to

the prototypical, static model of mixed duopoly. The extensive literature on competition
in the presence of learning-by-doing initiated by Spence [1981] seems particularly
pertinent since it focuses directly on how cumulated output can reduce costs (or, less
commonly, improve willingness-to-pay) over time. The present paper can be read as an
attempt to extend that literature to a duopoly structure in which objectives are mixed
rather than symmetric. The focus falls on demand-side learning here, both because of the
specifics of the Linux vs. Windows case and because demand-side learning is entirely
unstudied from a mixed perspective (whereas there are a few models of cost-side

 2

learning that can at least partially be reinterpreted in these terms, e.g., models in which a
dominant firm that is a price leader competes with a price-taking fringe, e.g., Ross
[1986]).

The focus on modeling the effects of learning on the demand side induces some

simplifications on the cost side. The baseline model in this paper assumes that marginal
costs are zero for both competitors. Cases with symmetric constant marginal costs are
structurally equivalent, and an extension to allow for a marginal cost penalty for the
profit-maximizing competitor is offered later on in the paper. Some of the conclusions
can also be reinterpreted to apply to cases in which the profit-maximizer incurs fixed cost
flows for as long as it chooses to remain in operation as well as marginal cost flows.
However, the full endogenization of fixed cost investments in learning, as opposed to
learning purely by doing, is beyond the scope of this paper because of complexities that
are hard to handle even within the familiar confines of symmetric profit-maximization.

The ultimate test of all these design choices that are embedded in the model of

dynamic mixed duopoly developed later in this paper is whether they lead anywhere
interesting. Several criteria, in addition to the basic requirement of theoretical coherence,
might be specified for such assessments: nonobviousness, breadth of applicability, policy
implications, et cetera. But the particulars of the model must be specified and the
implications identified before assessments of whether they are interesting can be made.
To this end, Section II provides some background on Linux (and open source software
more generally) vs. Windows, the case in which the model is grounded in a number of
ways. Section III lays out the basic model and comparative statics, and Section IV
develops some extensions. Section V concludes.

II. Background: Linux, Open Source Software and Microsoft

The analyses of mixed duopoly in Sections IV and V of this paper are grounded in

the case of Linux vs. Windows in operating system software for computer servers that is
discussed in some detail in this section (and even more extensively in a teaching case).
The detail reflects the multiple ways in which such grounding helps with the modeling
effort: by helping determine some of the assumptions underlying the modeling effort,
suggesting some of the analyses to be performed with it, providing a basis for testing a
(limited) number of its implications as well as illustrating them, and also supplying some
concrete, vivid ways of representing the players in the model, their interactions, et cetera.
(Linux vs. Windows is more memorable and less likely to lead to confusion about
objectives and roles than firm 1 vs. firm 2, for example.)

Despite this last use (or abuse) of the case, the model should not be thought of as

a literal representation of Linux vs. Windows: the references to the two in the later,
analytical sections are mostly meant to be metaphorical and not to suggest that a serious
or deep policy analysis of that particular case is being offered.1 As discussed in Section I,

1 For instance, in early 2003, the migration rate to Linux seemed highest among server customers

previously using Sun’s proprietary stack of hardware and software with its own operating system variant
on Unix, Solaris. While migration of this sort could be reinterpreted in terms of the duopoly model

 3

the objectives of the modeling effort are actually broader than developing a model of
open-source software vs. traditional, for-profit software firms, although the broader
issues are apparent even within that particular setting. Specifically, there has been an
extensive, and continuing, debate about open-source as a system for innovation that
ranges, at its extremes, from those who celebrate open source in frankly liberationist
terms to those who condemn it as an innovation destroyer (“a threat to the American
way,” in the words of one senior Microsoft executive).

In 2003, the Linux operating system was the best-known example of the

burgeoning open-source software movement. 2 Other major open-source successes
included Apache, the most popular software for running web servers, Sendmail, the
dominant messaging service program for routing and handling email used by email
servers, and PERL, a programming language for writing scripts allowing websites to call
and run applications on a server. Open-source’s smaller successes in enabling users to
develop their own software applications were considered no less important, however, in
its campaign to open up access to computer software “source code.”

Open-source software development stressed collaboration among user-developers,

with each being able to directly alter and improve the product. Traditionally, when
programmers modified code, they altered “source code” written in high-level computer
languages such as Java, C++, and Unix that was compiled and then read by machines as
“object code,” expressed in machine language (a string of 0s and 1s) that was hard for
humans to interpret. Open-source projects let users directly modify source code, which
was freely available. This was supposed to lead to continuous improvement of the
product, as bugs were patched and new capabilities were developed. Traditional or
“closed” software, on the other hand, required that consumers purchase a license to run
object code rather than gaining access to source code. Open-source software was
distributed with “its sources and the right to modify and redistribute it…” intact such that
the original development paradigm would continue. Open-source thus denoted itself not
only a particular method for the creation of software creation but also its distribution
under a particular institutional framework.

The institutional framework for making a public good of software was provided

by the GNU Public License, or GPL, a new type of copyright created by the Free
Software Foundation in the late 1980s. The GPL prohibited developers from making
code proprietary, by preserving the right of anyone to “use it, copy it, modify it, and
distribute their modifications.” Under GPL, derived works also had to be distributed

developed and analyzed later in this paper as restricting Windows’ share growth, really taking it seriously
would require a somewhat different, more complex model—a triopoly at least.

2 In this paper we use the expression “open source” to refer to both open source and free software (as defined
by Richard Stallman’s Free Software Foundation (FSF)). According to the FSF, a program is free software if users have
four fundamental freedoms: freedom to run the program for any purpose, freedom to study how the program works and
adapt it to the user’s needs, freedom to redistribute copies, and freedom to improve the program and release improved
versions to the public. This view is shared by the open source movement. However, according to Richard Stallman,
“the fundamental difference between the two movements [open source and free software] is in their values, their ways
of looking at the world. For the Open Source movement, the issue of whether software should be open source is a
practical question, not an ethical one. As one person put it, ‘Open source is a development methodology; free software
is a social movement.’ For the Open Source movement, non-free software is a suboptimal solution. For the Free
Software movement, non-free software is a social problem and free software is the solution.”

 4

under the same format, which had important implications. This caveat prevented
“software hoarding,” or taking code “private.” Lastly, in order to avoid the “closing” of
code, the GPL also prohibited mixing open-source with closed source code at the “source
code” level. In economic terms, the GPL license attempted to establish the “public good”
character of the software that it covered. This copyright form quickly became known as
“copyleft,” as it was diametrically opposed to traditional copyright forms. The copyleft
license was maintained by the Free Software Foundation, and enforced through Internet
verification, as users clicked an “I agree” button when downloading copyleft software.
The copyleft license was offered on take-it-or-leave-it terms and without it, software was
not considered open-source. The provisions of the GPL had yet to be tested in court,
however.

Open-source software development occurred within the GPL framework and

involved efforts that varied greatly in terms of the scale and organizational complexity
but generally sought to harness demand-side learning more effectively than traditional
“closed” models. Open-source development was supposed to compress development
cycles, lead to more “use-combinations” being tested and provide more of an incentive
for users to report problems or fixes than “closed” models, which might make users pay
for improvements even if they had suggested them. Successful open-source software
applications such as Apache and Linux did, on a number of dimensions (e.g., defect rates
and speed of response to customer problems), exhibit higher quality than their leading
for-profit competitors (Microsoft’s IIS and Windows NT respectively)—evidence
concerning Linux in this regard is discussed in a bit more detail below.

Such quality-enhancing, demand-side learning effects had been compared to

conventional cost-reducing supply-side learning curves with their traditional industrial
logic of cutting price, gaining share and reducing costs particularly rapidly (e.g., by the
Boston Consulting Group, an early proponent of the strategic importance of supply-side
learning-by-doing). In the context of open source software, the virtuous cycle was
supposed to involve giving source code away, attracting users through performance
advantages as well as zero prices, and drawing on users’ learning and contributions to
increase product quality particularly rapidly. These efforts to harness demand-side
learning had a number of essential elements. First, they presumed a large number of
users to report bugs—as evident in the aphorism that “Given enough eyeballs, all bugs
are shallow.” Second, smaller numbers of users performed such essential functions as
support, documentation and debugging and a smaller number still developed most of the
new code—although here too, there was need for critical mass. Obviously, it helped if
the users who valued the open source product more also had the programming ability to
customize it to their purposes. As a result, engineering tools and utilities made up a large
percentage of open-source programs while word processors did not. Third, good ideas—
including all the major open-source successes cited above—were generally thought to
come from developers “scratching an itch” and providing their services for free instead of
following orders or trying to make money. Fourth, the leaders of many initiatives
adopted policies of “release early, release often”—an emphasis greatly aided by the
Internet, which permitted people around the world to work on tasks such as software
development in stable, coordinated ways. Fifth, to the extent that the product was
complex, it had to be disaggregable into parallel modules for open-source development to
work well. Finally, open-source projects often complemented each other: for example,

 5

GNOME, also an open-source project, was creating a graphical user interface (GUI) for
Linux. Open-source projects additionally helped each other in the sense that when one
project gained legitimacy, that created a halo-effect for the entire stable of open-source
programs.

Linux was the most visible of myriad open-source projects: it was cited much

more often than any other project, and more often even than the open-source movement
itself. Linux was an operating system that reflected the contributions of over 3,000
developers in ninety countries and five continents. Operating systems performed basic,
relatively discrete and well-defined tasks, such as recognizing input from the keyboard,
sending output to the display screen, keeping track of files and directories on the disk,
and controlling peripheral devices such as disk drives and printers. At the heart of any
operating system was the kernel which, in Linux’s case, made up of about 30% of the
total number of lines of code in the OS. Surrounding the kernel were modules:
applications, utilities, ports etc.

The Linux initiative began in 1991, when Linus Torvalds, then a young

undergraduate at the University of Helsinki, began to develop Linux as a “Unix-like”
kernel. By October 1991, he released the first version of his “pet project” and by
December, over one hundred people had joined the Linux newsgroup mailing list. In
1992, Torvalds integrated his work with that already completed on another open-source
project, GNU, to create a freely-available Unix-like OS. Development then began in
earnest, although it was initially subject to significant hardware constraints. The size of
the Linux kernel grew nearly exponentially, from approximately 1 Megabyte (Mb),
compressed, by the end of 1992 to 5 Mb by 1996 to about 20 Mb by 2000. This growth
brought both new functionalities and new problems, as complexity grew. By July 2000,
there were over four hundred Linux usegroups, over 3,500 applications and more than
85,000 Linux-related messages generated per month. And Linux had carved out a
significant #2 position for itself in server OSs (for the powerful computers that were the
backbones of networked communicating), where it was narrowing the market share gap
with the dominant offering from Microsoft, but continued to have very little presence in
client OSs (for personal computers).

Server OSs were bought almost exclusively by corporations and the market for

them was segmented based on whether they were supposed to operate high-end servers
that cost more than $1 million, mid-range servers that cost from $100,000 - $1 million
and the entry-level segment that typically consisted of servers costing less than $100,000.
Within the server OS market, the Linux’s penetration was concentrated in the entry-level
segment.

According to one set of estimates, the total number of Linux users was estimated

to have increased from 1,000 in 1992 to 20 million by 2000. The same source predicted
that by 2004, the number of Linux users would increase to 30 million, across both client
and server OSs, compared to 338 million for Microsoft products. Furthermore, by 2004,
Linux was expected to secure a 6% share of the client OS market and 37% of the server
OS market of installed users, compared to 88% and 43% respectively for Microsoft’s
market-leading products. Focusing on the server OS market, Linux accounted for 2.0
million new licenses worldwide in 2000, a 30% unit share, while Microsoft had 2.5

 6

million new licenses of Windows NT during the same year, a 38% unit share. Through
2004, the compounded annual growth rate in unit server OS license shipments was
forecast to be 35% for Linux, versus somewhere between 15% and 25% for Microsoft.
Table 1 provides additional market share data.

<TABLE 1 about here>

Supporters explained Linux’s success at the expense of Microsoft’s Windows and

other closed server OSs in terms of numerous advantages: lower costs (see Table 2),
fewer bugs and more reliability, which were related to each other and to faster releases,
better interoperability across different computer platforms (since developers of new
platforms could alter Linux themselves), greater scalability (because of it was bare-bone
rather than feature-heavy), modularity (since even the kernel was split into kernel
modules starting with Linux version 2.0), freedom from restrictions on the number of
users attached to a server or the number of servers on which a single copy of the OS
could be installed, and the convenience of being able to download the software from the
Internet instead of having to obtain it in a shrink-wrapped package. Microsoft disputed
many of these advantages, but the fact that there was a dispute at all—compared to
earlier, when Microsoft took no public notice of Linux—suggested that this open-source
development effort, like several others, had reached a level of acceptance that Microsoft
regarded as threatening.

<TABLE 2 about here>

Microsoft appeared to stand to lose more than any other company from Linux’s

penetration of the market and, more generally, open-source software’s success, precisely
because of how well it had performed in the past: it was number 1 or 2 in all packaged
software categories, its flagship Windows product was installed on 95% of desktops, and
it had delivered a 58% average annual return to investors from 1989-1999. However, up
to 25% of Microsoft’s revenue was estimated to be at significant risk once threats from
open-source software were taken into account (see Table 3). In addition, market
dominance did not translate into resource dominance: Microsoft had had only 250 people
working on Windows NT—whose costs it had to shoulder in entirety—compared to the
thousands of developers working on Linux, mostly for free. In fact, some thought that
Microsoft’s dominance was one of the biggest spurs to the investment in and success of
open-source software. In addition, allegations of market dominance by Microsoft had
also engendered significant antitrust concerns and constraints.

<TABLE 3 about here>

One of Microsoft’s first acknowledgements of Linux as a viable competitor was

in 1998, in documents later leaked (http://www.opensource.org/halloween), in which
Microsoft employees laid out plans for defending its franchise by moving to
decommoditize protocols and services by extending them in a proprietary manner,”
thereby “locking out customers and competitors.” In May 1999, Microsoft assigned a ten
person “swat team” to work specifically on the problem of Linux. And in July 2000,
Microsoft announced its “dot-net initiative” which sought to sell more software products
as services (an application service provider or ASP model) rather than as shrink-wrapped

 7

packages. The ASP model would afford Microsoft more flexibility to try different
pricing schemes, including a low-priced subscription model that might compete
effectively with open-source software.

Since then, Microsoft stepped up the intensity of its rhetoric. Microsoft CEO

Steven Ballmer characterized Linux as “enemy no. 1.” Another senior executive
described open-source as the “worst thing to happen to the software industry” and the
“thing that kills innovation,” and painted a bleak picture of a world in which immature
products were released and consumers suffered. While criticizing the GPL, Microsoft
talked up its own “Shared Source Philosophy (SSP),” which purported to mine the best
aspects of open-source and which would be incorporated into Microsoft’s licensing
model. Elements of the SSP included open-source access programs (some already
mandated by the courts), educational initiatives, and measures to improve customer
feedback. In the words of a senior Microsoft executive, SSP was a “balanced approach
that allows us to share source code…while maintaining the intellectual property.”

Even more recently, in summer 2002, Orlando Ayala, then in charge of

worldwide sales at Microsoft, sent a confidential e-mail message (later leaked) to senior
managers, including CEO Ballmer, telling executives that if a deal involving
governments or large institutions hung in the balance, they could draw on a special fund
to offer the software at a steep discount or even free if necessary. “Under NO
circumstances lose against Linux,” according to the email.3

Such interactions between not-for-profit open-source software and for-profit

closed software have not been studied much in the burgeoning literature on open source
software, which mostly focuses on how open-source development efforts are organized,
particularly the satisfaction of the individual participation constraints of user-developers
who are critical to learning on the demand side (see Appendix A). In particular, there
seems to be a total dearth of models that embed the competition between Linux and
Windows in an explicitly dynamic model with demand-side learning. Such a model is
presented in the next section.

III. A Model of Open Source vs. Closed Software

The baseline model that we work with assumes a mixed duopoly, demand-side
learning for both open-source and closed development efforts, a commitment to price the
open-source product at zero, and strategic but nondiscriminatory pricing by the for-profit
player that accounts for the effects of current prices on learning and future customer
appeal.

 We begin by specifying the demand side of the model. In each period t, a new
cohort of potential users enters the market. We normalize the size of this cohort to 1. Let
()∈tyi +, { }LWi ,∈ , be the cumulative market share of operating system (OS) i at time

t. Thus, if ()τq is the portion of individuals in time τ ’s cohort who buy Windows, then

 3 Thomas Fuller, “How Microsoft Warded off Rival,” New York Times, May 15, 2003.

 8

() () () ()() ττττ dqtydqty
t

L

t

W ∫∫ −==

0

0
1and ,

where we use W and L to denote Windows and Linux, respectively. Thus, we assume that
every individual in each cohort uses one and only one OS; she either buys Windows or
downloads Linux for free.

Let () () ()tsytyty LW −≡ , where s is a scalar greater than zero. Let iα denote OS
i’s value by the cohort entering at time t and let ()()tyii αα = . We refer to ()()tyiα as OS
i’s technological trajectory (Foster, 1988). OS i’s trajectory is a function of its cumulative
market share, ()tyi , and the competing OS’s cumulative market share, ()ty i− . While
technological trajectories are exogenously given in the model, how far each OS can travel
down its trajectory is endogenous; the result of the dynamics of competition.

 We assume that:

1. We assume linear demand functions: Windows’ value to customer []1,0∈q is

 ()()qyW −1α (1)

Similarly, let the value of Linux be

 ()()qyL −1α . (2)

Graphically,

2. () 0>
∂

∂

i

i

y
yα , i.e., that OS i’s value increases with OS i’s cumulative market share.

This captures two kinds of effects: the more people use (or have used) a given OS, the

10

()()tyiα

q

p

()() ()()tqtyi −1α

q(t)

v

Potential
customers at
time t that
value OS i at v
or more

Potential customers at
time t that value OS i
less than v

 9

more feedback is likely to have been provided for improvement. In the case of open
source projects, users can make improvements directly on the code. In the case of closed
software, users can call up or email the software developer with suggestions. In addition,
the larger is ()tyi , the more complements are likely to be available for OS i.
Complements’ availability raises the value of the OS.

The assumption also implies that () 0<
−∂

∂

i

i
y

yα , i.e., OS i’s value decreases as the
cumulative market share of the competing OS increases. Again, this is related to the
attention and effort that third-party developers devote to creating new and improving old
software and hardware. An OS is more likely to get developers’ attention if its
cumulative market share is relatively large. The larger is ()ty i− (holding ()tyi constant),
the less effort is devoted to develop complements for OS i, and vice versa. This
reduction jeopardizes the value of OS i because bugs are not fixed as often, programs are
not updated, new software and hardware may not work/communicate as well with
existing software and hardware, unforeseen compatibility issues are more likely to arise,
et cetera.

3. () ∞<=

∞→ iiy y ααlim , i.e., OS i’s value is finite, even if everyone used the OS. Also,

() 0lim =
−∞→

yiy α , i.e., OS i’s value approaches zero if everyone used the other OS. Thus,
technological trajectories are bounded; there is an upper bound on the maximum value
created by each operating system. The case in which WL αα > corresponds to a situation
where Linux’s potential quality is strictly larger than that of Windows. Assumptions 2
and 3 imply that () 0≥yiα , i.e., the value of each OS is always positive.

4. Let () () ()yyy LW ααβ −≡ , then () 02

2

≤
dy

yd β for 0yy > , where 0y is the value of y

for which both Linux and Windows are perceived as equally valuable. (Formally, 0y
solves () ()yy LW αα = ; assumptions 2 and 3 imply that 0y is unique.) This assumption
says that cumulative market share has a decreasing marginal effect on the difference in
value between Windows and Linux.5

 As mentioned above, we assume that everything else constant, as yi grows, the
vertical intercept ()yiα in the demand function also increases. Thus, as the accumulated
market share (or installed base) of OS i grows, the value of the OS also grows for all
potential customers.

5 This is a technical assumption that simplifies exposition. It can be relaxed to: there is 0ˆ yy ≥ such that for

all yy ˆ≥ , () 0<dy
ydβ . With this assumption, there may be more than two steady states. If there are multiple steady

states, our results on ssy (the stable steady state) hold unchanged for the steady state with the largest y .

 10

 Recall that () () ()tsytyty LW −≡ . Formally, s is the absolute value of the
derivative of y with respect to Ly . If ()11 <>s , then increases in Ly have more (less) of
a positive impact on perceived quality of Linux than the negative impact of comparable
increases in Wy . Parameter s has two complementary interpretations: the differential in
demand-side learning between Linux and Windows and the differential strength of
network externalities due to the availability of complementary software. Thus, for a given
level of network externalities due to complements, increases in s correspond to a
strengthening in Linux’s demand side learning.

Example. The following S-shaped technological trajectories, satisfy the assumptions.6
Let ()1,0∈λ . Let

()




 ≥

= +
−

−
−

LWy

y

W

syy
y

W

W

 if

otherwise

1

1

λα

λαα

and

()




 ≥

= +
−

−
−

LWy

y
L

syy
y

L

L

 if
 otherwise

1

1

λα

λ
α

α

In this example, Windows is more valuable than Linux whenever LW syy

W

WL +> −
α
αα .

Assuming 3
1=λ , 2=Wα and 3=Lα , then functions Wα and Lα look as follows:

In what follows, we analyze the dynamics of competition and its effects on

cumulative market shares yw and yL.

 6 Strictly speaking, the functional forms in the example satisfy the assumptions at all points other than

0=y , because at this point the trajectories are not differentiable.

y(t)

()()tyWα

0 y(t)

()()tyLα

0

2

3
Wα Lα

 11

Dynamics of competition

We distinguish between two cases: one in which Microsoft is a monopolist and
another in which it is a duopolist, competing to sell Windows against Linux.

Monopoly

In a monopolistic market structure, there is no substitute for Windows and
potential customers are willing to pay something (even only a small amount) for
Windows. Inverse demand follows directly from equation (1). Let r be Microsoft’s
discount rate and assume that marginal cost of an extra copy of Windows is zero.
Microsoft solves:

() () ()∫
∞

−

0

max dttptqe rt
tp

 subject to
 ()tqyW =&
 () ()() ()()tqtytp W −= 1α
 () 0≥tp

The following proposition will be useful in comparing monopoly and duopoly.

Proposition 1 As t ∞→ , () 2

Wtp α→ and ()() WW ty αα → .7

Therefore, profit per period approaches 4

Wα and deadweight loss per period goes

to 8
Wα .

Duopoly

When both Windows and Linux are available and Windows is sold at a price p,
the customer precisely indifferent between the two, q , is given by:

()() ()()qypqy LW −=−− 11 αα .

Thus, inverse demand is

()()qyp −= 1β

where () () ()yyy LW ααβ −≡ indicates the value difference between Windows and Linux.

7 All proofs are contained in Appendix B.

 12

Graphically,

 Notice that in this model, customers in every new cohort are assumed to be
myopic in the sense that they buy the OS that is immediately most valuable to them (after
subtracting price). The extension to the case of forward looking buyers is developed in
Section IV.

We assume that at time 0=t , Windows is perceived as more valuable than Linux.
That is, ()() 00 >yβ . Note that when Microsoft sets p = 0 and () 0>yβ , demand for
Windows is 1 (the size of the entering cohort). Thus, as long as () 0>yβ , Microsoft can
capture the entire new cohort by setting p = 0. However, in this case profit is also 0. The
customer who most values Windows, is willing to pay no more than ()yβ , an increasing
function of market share Wy , for it. In contrast, if market shares are such that () 0≤yβ
(Linux’s perceived quality is at least as large as that of Windows), then nobody is willing
to pay anything for Windows.

Because () () ττ dqty
t

W ∫=

0
 and () ()() ττ dqty

t

L ∫ −=

0
1 , we have

() ()()tqstqy −−= 1& . (3)

10

()()tyβ

q

p

p(t)

()() ()() ()tptqty =−1β

At time t, these
individuals buy
Windows at price
p(t)

At Windows price
p(t), these
individuals prefer
to download and
use Linux

 13

Let r be the discount rate. Microsoft’s problem is:

 () () ()∫
∞

−

0

max dttptqe rt
tp

 subject to
 () ()()tqstqy −−= 1& (4)
 () ()() ()()tqtytp −= 1β
 ()() 00 >yβ

 () 0≥tp

We can therefore use standard phase diagram analysis to examine the long-run dynamics
of competition.

Proposition 2 Windows and Linux coexist in the long-run, steady-state

equilibrium as long as 1>s . When 1≤s , Windows pushes Linux out of the market.

Proof. The proof involves using phase diagram analysis to graphically represent

the path leading to steady state and show that path is optimal by checking Mangasarian’s
sufficient conditions. See Appendix B. �

Proposition 2 implies that Microsoft is never pushed out of the market by the free,

open source operating system, regardless of the speed of demand side learning (the value
of s), the difference in potential maximum values (WL αα −), and market shares at time

0=t . The phase diagram looks as follows:

0=m&

0=y&

0y yss y

m

 14

The two steady states 0y and ssy are characterized by

() 00 =yβ

and

 ()
()

()
s

sr
y
y

ss

ss 1' −
=

β
β , (5)

respectively. The phase diagram reveals that 0y is unstable and ssy is a saddle point.

 With the functional forms assumed in example 1, the two steady states can be
computed explicitly. The unstable steady state is

W

WLy
α
αα −

=0

and the saddle point is

() W

L

W

L

W

WLss

sr
sy

α
α

α
α

α
αα

142
2

2

2

−
++

−
=

Notice that 0yy ss > . For example, when %5 ,3 ,2 === rLW αα , and 5

9s = , the steady
states are 2

1=ss
uy and 8=ssy . In this example, if y ever fell below 2

1 Windows would
be perceived as less valuable than Linux. As long as () 2

10 >y , Microsoft’s pricing
strategy guarantees that ()ty never falls below 2

1 and thus Windows is not pushed out.
The value of β in the steady state ssy reflects the long run difference in perceived
quality between Windows and Linux.

 The result that Windows will persist in the long run regardless of the difference
between potential values of Windows and Linux (Wα and Lα) and regardless of the
speed of demand side learning on the part of Linux (s) is central to our inquiry on the
competitive dynamics between open source and closed software. Contrary to earlier
results on competition with network externalities, in our model the failure of Linux to
replace Windows is not due to switching or search costs (see, for example, David
(1985)). Furthermore, the failure of a higher potential quality OS to eventually win the
market out is not related to demand side coordination issues (as in Farrell and Saloner
(1985, 1986)) because demand coordination does not raise the instantaneous value of the
OS on which buyers coordinate. In our model, without Microsoft’s forward looking
pricing strategy, Windows would inevitably wind up being replaced by Linux (whenever

WL αα > and 1>s). Instead, it is Microsoft’s strategic actions that generate the result.
The market does not fully tip to Linux because Microsoft’s strategic decisions prevent
that from happening.

 15

 More generally, much of the network externalities literature focuses on one profit-
maximizing firm versus another or, if looking at demand side issues, assumes competitive
supply. Instead, we look at asymmetric/mixed mode competition. In particular, the
interaction between for-profit and not-for-profit entities seems particularly interesting in
the context of knowledge development/innovation. In addition, our model features
explicit dynamics, not a two period abstraction as in much of the literature on network
externalities.

It is interesting to notice that it is never optimal for Microsoft to “milk” its initial

advantage (()() 00 >yβ) by setting high prices in the short term and at some future point
leave the market. To understand why, notice first that the myopic profit maximizing price
in period t is ()()typ β2

1= (for an instantaneous profit of () ()()tyt βπ 4
1=). Clearly, if

Microsoft was determined to milk its short term advantage, it would eventually set prices
at this level (this would be Microsoft’s optimal choice in the period immediately
preceding its exit). Consider now a downward price deviation from this myopic (or
“milking”) profit maximizing price to ()() δβ −= typ 2

1 where 0>δ . The new profit in

period t is ()()
()()ty

ty
β

δβπ 4
4 22 −= which is strictly less than the myopic profit that period.

However, by reducing price by δ , Windows is more valuable in period 1+t than if price
had been maintained at the myopic level because quantity sold in period t is larger. In
particular, ()() () ()

()()()ty
sstyty β

δββ +− ++=+ 1
2

11 instead of ()() ()()2
11 styty −+=+ ββ . Now,

if Microsoft sets ()() δβ −= typ 2
1 in period t and goes back to the myopic profit

maximizing price in period 1+t (()()12
1 += typ β), the net present value of profit as a

function of δ can be expressed as:

()() ()()
()() () () ()

()() 





 +
+

−
+

+
+

−
=

ty
ssty

rty
tyNPV

β
δβ

β
δβδπ 1

2
1

14
1

4
4
2

22

The derivative of ()()δπNPV at 0=δ is:

()()()
()

()()
() ()() 01

1
1

14
1

0

>
+

+
+

+
=

+++

= 32143421321 ty
s

tdy
tyd

rd
NPVd

β
β

δ
δπ

δ

.

Therefore, regardless of the discount rate and regardless of the size of the initial
advantage, it is always the case that, starting from the myopic profit maximizing price, it
is optimal to reduce current price a little bit. The reduction in instantaneous profit is more
than offset by the corresponding increase in profit next period.

More precisely: the derivative of instantaneous profit evaluated at the myopic
price ()()typ β2

1= is 0 (by definition). However, the period before Windows exits, it
must be the case that ()() 0≈tyβ and because ()()ty

pq β−= 1 , we have that ∞≈− dp
dq .

Therefore, that last period lowering price a tinny little bit has a huge effect on next
period’s perceived value of Windows and almost no effect on the present period profit

 16

level. Thus, it is optimal for Windows to always set a lower price than the myopic
optimum.

The following comparative statics are of interest:

Proposition 3 Assume 1>s , then

(a) 0<
ds

dy ss

; (b) 0<
dr

dy ss

; (c) ∞<< ∞→
ss

s yy lim0 ; (d) ∞=+→
ss

s y1lim ;

(e) 0lim yy ss
r =∞→ ; (f) ∞=→

ss
r y0lim .

That is,

(a) The larger is Linux’s demand side learning, the smaller is the steady state difference
in accumulated market shares between Windows and Linux. Once the steady state has
been reached, ssy is a constant but Wy and Ly keep growing without bound.

According to (b), the more myopic Microsoft is, the more similar are the steady state
perceived qualities of Windows and Linux. And the more patient Microsoft is, the greater
the long-term perceived quality advantage of Windows.

(c) Even as the sensitivity of y to Ly goes to infinity, there is a lower bound on ssy
strictly greater than 0y . As a consequence, if Windows is ahead, it will stay ahead
regardless of the value of s.

(d) As Linux’s demand-side learning approaches 1, if Windows is ahead, Linux will
eventually be forced out of the market.

(e) The only case in which Microsoft is pushed out by Linux is if Microsoft is completely
myopic. In this case, Microsoft goes after exactly 50% of every new cohort, but then if

1>s , Linux’s effective cumulative market share will eventually become orders of
magnitude larger than Windows’. In the long-run Windows is less valuable than Linux.

(f) If Microsoft became completely patient, it would effectively push Linux out of the
market.

Having computed explicitly the stable steady state, it is trivial to calculate the
implied quantities, prices, and profits, and to establish the following corollary:

Corollary Microsoft’s steady state price and profit is always lower in a

duopolistic industry structure.

Clearly, at monopoly prices some customers prefer to get Linux for free.

Microsoft takes this into account and lowers prices.

 17

Cost

The most immediate way to overturn the result that Windows will prevail no
mater the strength of Linux’s demand side learning, is by introducing cost asymmetries.
In particular, let c be a per-unit (marginal) cost for Windows and assume Linux’s unit
cost is zero. This can be thought of as production or sales cost, post-sales service, et
cetera.

With c , we rewrite Microsoft’s objective function as

() () ()()∫
∞

− −
0

max dtctptqe rt
tp

and solve problem (4) with the exact constraints (see the proof of Proposition 2).

The presence of c jeopardizes Microsoft’s ability to control the share of each

entering cohort that is captured by Linux. As a consequence, if Linux’s demand side
learning s is large enough, Linux can ‘force’ Windows out of the market.

It is also interesting to notice that with c , s does not need to be greater than 1 for

Linux to be able to stay a viable competitor. If Microsoft’s ability to build share is less
than perfect, then Ly will increase relatively more rapidly and 1>s is unnecessary for
the viability of Linux. In the example, if k

Wc α= , with 1>k , the maximum number of
customers that Windows can get out of each cohort (if price is greater than or equal to
marginal cost) is less than k

k 1− . As 1→k , Linux’s period market share approaches 1.

Welfare

The corollary above suggests that a duopolistic industry structure is likely to
dominate Microsoft’s monopoly in terms of total welfare generation. Also, if Linux’s
potential quality is above that of Windows (WL αα ≥), one would expect that Linux’s
monopoly should dominate Windows’ monopoly and the duopoly. In this section we
analyze the welfare implications of each industry structure and show that neither of these
claims is necessarily true.

We begin by analyzing welfare for the new cohorts entering after the steady state

has been reached. The case where Microsoft is a monopolist is immediate. Total surplus
(producer plus consumer surplus) is

W
Monopoly

WTS α
8
3

= .

Similarly, Linux’s monopoly steady state total surplus is

 18

L
Monopoly
LTS α

2
1

= .

Thus, Linux’s monopoly is socially more desirable than and Windows’ monopoly as long
as WL αα 4

3> .

More interesting is the comparison between a Windows monopoly and a
Windows-Linux duopoly. The following figure summarizes the computation of total
surplus generated by the duopoly (total surplus is the sum of the shaded areas):

Using equations (A1) and (A9) in Appendix B, it can be easily shown that total

surplus generated by Windows is given by

() ()
()2

2

1
11

2 +
−+

=
s

syTS
ss

WDuopoly
W

α ,

and that of Linux by

10

10

q

p p

p

q

q

()ssyβ

()ss
W yα

()ss
L yα

ssp

ssq

ssq

10 ssq

ssp

Windows

Linux

()()ssss
W qy −1α

()()ssss
L qy −1α

 19

()
()212 +

=
s

y
TS

ss
LDuopoly

L
α .

Total duopoly surplus is

()
() ()() ()()ss

L
ss

W
Duopoly ysy

s
TS αα +−+

+
= 11

12
1 2

2 .

Whether DuopolyTS is greater or less than Monopoly

WTS is ambiguous. There are two
reasons why duopoly can enhance consumer surplus. First, because Linux is available,
Microsoft is induced to set lower prices. Second, those individuals in the cohort who do
not buy Windows are not left empty-handed, they can download and use Linux for free
and this raises total surplus. However, the fact that part of the population uses Linux,
lowers the perceived value of Windows (because there is some substitution of third-party
complement development from Windows to Linux). If this effect is large, monopoly
(where all developers produce complements for Windows) may result in larger total
surplus.

 To see formally that the comparison between DuopolyTS and Monopoly

WTS is
ambiguous, suppose first that for some technological trajectories (()⋅Wα and ()⋅Lα) we
have that Monopoly

W
Duopoly TSTS > . Consider now a new technological trajectory ()yW

*α that
coincides with ()yWα everywhere up to a point ssyy >* . From that point on, ()yW

*α

grows linearly (with slope ()
*yydy

yd W

=

α) up to a magnitude larger than Wα . From that point

on, ()yW
*α levels off. Clearly, with this new technological trajectory,

DuopolyMonopoly
W TSTS > .

Let’s now consider the case in which for some technological trajectories

DuopolyMonopoly
W TSTS > . Let 0→r . Monopoly

WTS does not change. However, by Proposition
3(f), ∞→ssy and thus () W

ss
W y αα → . Furthermore, by (A1) and (A9), () 1

1
+= s

ssss yp β .
These two facts together imply that 1

1
+→ sW

ssp α . Therefore, because in the limit both
demand functions are the same and with a duopoly Windows is sold at a lower price, it is
the case that DuopolyMonopoly

W TSTS < .

Therefore,

Proposition 4 Steady state total surplus may be larger under Windows’

monopoly than under duopoly.

We conclude this section with an observation about welfare on the path to the
steady state. As mentioned above, when WL αα ≥ , steady state total welfare under Linux
monopoly is larger than steady state total welfare under Windows monopoly or duopoly.

 20

However, if it will take a long time for Linux to build market share, Linux’s monopoly
may still not maximize the net present value of total surplus. More precisely, let ρ be
the regulator’s discount rate and ()tTS Monopoly

W , ()tTS Duopoly , and ()tTS Monopoly
L be period t’s

total surpluses under Windows monopoly, duopoly, and Linux monopoly, respectively.
Suppose that users die at rate δ ; that is, if M users are alive in period t , then Mδ users
will be alive in period 1+t (in addition to the new entrants). The net present value of
total surplus can then be expressed as:

() ()∫ ∫

∞ −−
−

− 







=

0

0

1

,dtedTSeTS tt i
k

ti
k

ρυ
δ
δ

υυ

for { }DuopolyMonopolyi ,∈ and { }0,, /∈ LWk .

Although it is not possible to get explicit price sequences on the path to the steady
state, it is immediate to conclude that Linux’s monopoly may not maximize net present
value of welfare, the reason being that if ()()0yLα is substantially lower than ()()0yWα
and ρ is high (so that future welfare enhancements are discounted heavily), then the
immediate larger surplus generated by a Windows monopoly outweighs the potential
future gains associated with Linux.

IV. Extensions

We now present three simple extensions to the basic model: forward looking

buyers, strategic commitment to Linux and piracy of Windows. Forward looking buyers
may play to the advantage of Microsoft and strategic commitment helps Linux build
market share, but may or may not be welfare-enhancing. Even less expectedly, piracy
helps Windows increase its steady state quality difference, and may, therefore, result in
increased profits for Microsoft.

Forward looking buyers

Let φ be the (common) discount rate used by buyers to evaluate future utility.
Suppose that present time is t , that the state variable has value ()ty and that price is p .
The threshold buyer q is found by solving:

 () ()() () ()()() 







−−−∫

∞

=

−− pqdyqye
t

W
t

q
τ

τφ ττβτα 2
2
1 1max (9)

(To see this, compute consumer surplus for given p and notice that individual utility
maximization is equivalent to total surplus maximization.) Notice that when ∞=φ , (9)
reduces to ()()ty

pq β−=1 , just as in the benchmark model with myopic buyers.

 21

We analyze the case in which buyers are forward looking but believe that they are
so insignificant that their purchase decision will not affect the state variable. With this
assumption, (9) can be rewritten as:

()() ()() 







−−− ∫

∞

=

−− pqdyqe
t

t
q ττβ

τ

τφ 2
2
1 1max .

Solving the program yields:

() ()() ττβ

τ

τφ dye

pq

t

t∫
∞

=

−−

−=1 . (10)

Comparing (10) and the demand function in the benchmark model (()()ty

pq β−=1)
we see that whether the threshold q with forward looking buyers is larger or smaller than
that with myopic buyers depends on the buyers’ view on which OS will be more valuable
in the future. In particular, when ()()tyβ is large and positive and buyers’ discount rate is
not too low, the presence of forward looking buyers plays to the advantage of Microsoft
because for a given p , the threshold q is now larger than with myopic buyers. However,
if buyers expect ()()tyβ to eventually turn negative and their discount rates are low,
Microsoft will be forced to price lower than in the case where buyers are myopic.

Equation (10) shows that it may be worth for Microsoft to influence the value of
() ()()∫

∞

=

−−

 t

t dye
τ

τφ ττβ by infusing “fear, uncertainty, and doubt” into the OS user

community. Such emotions were stirred in the Linux community by, among other things,
SCO, a small Swiss-based “vulture” firm that had bought up the intellectual property
rights to a particular version of Unix and was threatening Linux users with lawsuits over
infringement of those rights unless they agreed to pay it substantial licensing fees. IBM,
which was one of the prime corporate sponsors of Linux as well as the target of a lawsuit
by SCO that sought $1 billion in damages, alleged in mid-2003 that SCO was in cahoots
with Microsoft.9

However, regardless of the value of () ()()∫
∞

=

−−

 t

t dye
τ

τφ ττβ , Microsoft can once

again guarantee a 100% market share of every new cohort by pricing sufficiently low.
Therefore, the result that Microsoft is not pushed out of the market by Linux (regardless
of the intrinsic advantages of Linux) remains intact when buyers are forward looking.

Strategic Commitment to Linux

Strategic commitment to Linux may manifest itself in governmental procurement
decisions, in decisions by strategic buyers such as IBM with a direct economic interest in
opposing Microsoft, and so on. For example, our qualitative attempt to classify the
governments in several dozen countries on the basis of the software platform that they

9 Andrew Dolley [2003].

 22

supported identified 13 countries, with the European Community particularly well-
represented, that seemed to be in the Linux camp versus five in the Microsoft camp and
12 in which governments seemed to have made relatively clear commitments to both
platforms (see Appendix C for details). Note that some degree of intrinsic affinity might
be expected between the open-source movement and governments in the presence of
shared nonprofit objectives; in addition, government procurement seems, in this category
as in many others, more price-sensitive, on average, than private or at least corporate
procurement.

To model such effects, suppose that a measure 0>ε of customers in every cohort

are committed to Linux for some reason of this sort. It is important to identify those
customers. We distinguish two polar cases. First, the potential customers represented
byε would have used Linux even if they were not committed to Linux. In this case,
there is no change. The steady state ssy is as given by equation (5).

Second, suppose that these ε customers would all have bought Windows had

they not been committed to Linux. These are individuals that value Windows above
Linux (after subtracting p) but they use Linux instead. We now examine the effect of
such commitment on long run competitive dynamics.

Recall that absent strategic commitment to Linux, demand for Windows is

()y
pq

β
−=1 .

But because ε ‘would-be-buyers’ of Windows are committed to Linux instead,

demand for Windows is

() ε
β

−−=
y

pq 1 or () ()yqp βε−−= 1 .

The equation of motion of y is as before (eq. 3), () ()()
.
1 tqstqy −−=& .

Microsoft’s problem is

() () ()∫
∞

−

0

max dttptqe rt
tp

subject to
 () ()()tqstqy −−= 1&

 () ()
()() ε

β
−−=

ty
tptq 1

 ()() 00 >yβ
 () 0≥tp

 23

Solving for the unique saddle point steady state ssy (see proof of Proposition 2),
we obtain

 ()
()

()
() s

r
s

ss
y
y

ss

ss

+−
++−

=
11

11'
ε
ε

β
β . (12)

Strategic commitment to Linux by a portion ε of Windows’ ‘would-be-buyers’

has two effects: helps build market share of Linux, thus increasing its value vis a vis
Windows, and it also forces Microsoft to lower its prices for Windows. A simple
computation using eq. (12) yields:

() () ()

()() ()() ()()
0

11'11''11

1
<











+++−+++−++−

+
=

++−
444 3444 21444 3444 214434421

ssrsss

srsy
d

dy ss

εβεβε

β
ε
ε ,

a negative number for ε small.

The following proposition shows that with the presence of strategic buyers, if
demand side learning on the part of Linux is sufficiently swift, Windows is pushed out.

Proposition 6 For given ε , if s is sufficiently large, Microsoft is pushed out of
the market. Equivalently, for given s , if ε is sufficiently large, Microsoft is pushed out
of the market.

Intuitively, when s is large, Microsoft has to make sure that Linux’s share

(()tq−1) remains very small. However, the presence of a portion of potential customers
who will never buy Windows jeopardizes Microsoft’s ability to capture (current cohort)
market share. If such ability is sufficiently damaged by these strategic buyers, Windows
is eventually pushed out.

Therefore, if s is large, strategic commitment to Linux induces efficient push out

of Windows by Linux. However, if s is small so that without strategic commitment,
Linux would be efficiently pushed out by Microsoft, with strategic commitment, Linux
may prevail.

We conclude that strategic commitment to Linux may enhance total welfare if s is

large, because that may push Windows out when it is efficient to do so. But strategic
commitment to Linux may reduce total welfare if s is very small because then Linux will
not be pushed out even though its push out would increase welfare.

 24

Piracy of Windows

We can also use an extension of the model developed earlier to analyze the effects
of piracy, as in the illegal copying, distribution, and use of software. Of course, because
Linux is free, it is only meaningful to talk about piracy of Windows.

Suppose that every period, a portion ρ of the entering cohort pirates Windows.

We assume that the portion of pirates is small (positive but sufficiently close to zero so
that an interior solution exists). Again, it is important to identify who these customers are.
Suppose a portion ()1,0∈µ comes from individuals who have bought Windows (high-
value customers) and the rest, µ−1 , would have gotten Linux (low-value customers).

Because ρµ ‘would be buyers’ pirate Windows, demand for Windows at price p
is

ρµ
β
−−=

pq 1 .

Notice that ρ+= qyW& and .1 ρ−−= qyL& Therefore,

()ρρ −−−+= qsqy 1& .

Microsoft’s problem is:

() () ()∫
∞

−

0

max dttptqe rt
tp

 subject to
 () ()()ρρ −−−+= tqstqy 1&

 () ()
() ρµ

β
−−=

y
tptq 1

 ()() 00 ≥yβ
 () 0≥tp

Solving the program, the unique saddle point steady state is characterized by:

 ()
()

()()()
()() ()()()1111

121'
−−+−+

−+−+
=

µρρ
µρ

β
β

sss
ssr

y
y

ss

ss

. (13)

Let ()() ()()()1111 −−+−+≡ µρρ sssA and ()() 121 −+−+≡ ssB µρ .

Differentiating (13) implicitly, we see that

 25

() () () () ()()()()
() ()()rByAyA

ssBssry
d

dyss

'''
11111 2

ββ
ρµβ

ρ
ρ

−
+−−++−+

−=

which is positive (when ρ is small).

An increase in piracy ρ has two effects. On the one hand, if 1<µ , some people
that would have chosen Linux, now use Windows because they get the OS for free. So,
there is an increase in period market share of size ()µρ −1 . On the other hand, if 0>µ ,
some people who would have bought Windows now get Windows for free. This does not
affect instantaneous market share, but shrinks demand and Microsoft is induced to set
lower prices and, as a consequence, the steady state market share differential also
increases.

Finally,

() () () ()()
()()() () ()()rByAys

sssry
d

dyss

'''111
11

ββµρ
ρρβ

µ
µ

−−−+
−++

=

is negative (for ρ small). The larger the piracy by ‘would be buyers’ the less the increase
in instantaneous market share (as compared to a situation where piracy comes from
individuals who would have used Linux.)

The following example shows that piracy may be beneficial to Microsoft not only

in terms of larger steady-state market share, but also in terms of steady-state profit.

Example 2 Assume the functional forms in Example 1 and set 3=s , %10=r ,

3.=µ , 1=Wα , and 2=Lα . Solving for the steady state profit as a function of piracy ρ ,
we have:

 26

Some Evidence

We compiled data on total Windows and Linux shipments for a sample of 51
countries in 4 continents and ran the following correlations:

 Notice that just as the results above show, piracy rates (row L) are negatively
associated with Linux penetration (column G) and the Linux/Microsoft ratio.

V. Conclusions

The specification, analysis and (very partial) testing of the model of dynamic

mixed duopoly in Sections III and IV of this paper was informed in multiple ways by the
case of Linux vs. Windows that was described in Section II. The case suggested a
specific way of framing the interactions between open-source software development
initiatives and their for-profit competitors: in terms of competition between an open-
source product priced at zero and a for-profit “closed” product, in the presence of
demand-side learning effects. Accordingly, this paper set up and analyzed a highly
stylized model of this sort in order to characterize the equilibrium outcomes to dynamic
competition of this sort and some of their comparative static and welfare properties. The
analysis, in particular, while not game-theoretic in the usual sense of interdependent
strategy choices, was strategic in the sense of requiring Microsoft Windows to take a
deep look into the future that recognized intertemporal linkages in its profit function (e.g.,
between past or current choices and future profits) as opposed to acting myopically,
which would have led to vary different predicted outcomes. As Arrow [1964] and others
have stressed, such intertemporal linkages and the commitment or irreversibility
underlying them are the key reason that the optimal intertemporal investment program
may not coincide with the instantaneous equation of the marginal productivity and the
marginal cost of capital (of whatever sort), i.e., the myopic investment program.

(B)
Nominal

GDP
(US$ at

PPP) per
Capita

(D)
Populati

on
(millions)

(G) Linux
share

(H)
Linux/M
S ratio

(I) Total
Shipmen

ts

(I/B)
Total

Shipmen
ts/GDP

(I/D)Tota
l

Shipmen
ts/Pop

(L)
Piracy
Rates

(%) 2000

(N)
Growth

Competit
ive Index

2001

(O)
Technol

ogy
Index
2001

(P)
Innovatio

n
subindex

2001

(Q) ICT
subindex

2001

(B) Nominal GDP (US$ at PPP) per Capita 1.00

(D) Population (millions) -0.33 1.00

(G) Linux share 0.35 -0.23 1.00

(H) Linux/MS ratio 0.37 -0.27 0.89 1.00

(I) Total Shipments 0.11 0.09 -0.23 -0.10 1.00

(I/B) Total Shipments/GDP -0.03 0.45 -0.30 -0.20 0.91 1.00

(I/D)Total Shipments/Pop 0.18 0.00 -0.22 -0.12 0.96 0.84 1.00

(L) Piracy Rates (%) 2000 -0.67 0.37 -0.43 -0.50 -0.08 0.11 -0.11 1.00

(N) Growth Competitive Index 2001 0.65 -0.21 0.27 0.25 0.08 0.00 0.15 -0.75 1.00

(O) Technology Index 2001 0.57 -0.32 0.32 0.29 0.04 -0.08 0.10 -0.77 0.92 1.00

(P) Innovation subindex 2001 0.70 -0.31 0.43 0.39 0.07 -0.06 0.14 -0.74 0.87 0.89 1.00

(Q) ICT subindex 2001 0.65 -0.37 0.42 0.42 0.06 -0.07 0.14 -0.84 0.92 0.91 0.86 1

 27

Embedding irreversibility in the form of sticky resources in a formal analytical
model of mixed duopoly yielded some arguably surprising conclusions. Thus, Microsoft
Windows’ persistence exceeded our pre-analytic intuitions because of the effects of
Microsoft’s strategic management of its position relative to Linux Other
effects/possibilities, e.g., that strategic procurement of Linux could hurt welfare, were
somewhat unexpected;. And other effects were surprising for other reasons, such as the
apparent first-order effect of piracy rates on Linux penetration.

More broadly, the present paper can also be read as an attempt, under admittedly

specializing assumptions, to analyze interactions between for-profit and not-for-profit
competitors. We know very little about competitive interactions in such a setting even
though, as Section I indicated, mixed objective functions of this sort can be thought of as
covering a very broad range of situations. This paper has made a very modest start at
addressing this large gap in our knowledge.

 28

Appendix A: Prior Research on Open-Source Software

Much of the prior literature on Linux/open-source focuses on how open-source

development efforts are organized, particularly (as noted above) the satisfaction of the
individual rationality or participation constraints of user-developers who are critical to
learning on the demand side. For compactness, we will refer to this as the organizational
strand of research on open-source.

The most focused substrand of the organizational research on open-source has

assumed utility-maximizing (potential) users/developers and tried to derive various sorts
of comparative static predictions about their developmental contributions. In early work
of this sort, Thorn and Connoly [1987] used theories of the economics of public goods to
argue that that the rates and effectiveness of discretionary information sharing amongst
employees in an organization would tend to decrease as (1) participation costs increased;
(2) the size of the overall group increased; (3) the lower the value of information to
participants and (4) the greater are asymmetries in information values and benefits across
participants.

More recent work in this line has pushed farther with formalizing these insights

and developing new ones. Thus, Kuan [1999] framed consumer choice between open and
closed source software as a make-or-buy decision, with the former option entailing a
further decision about how much effort to exert contributing to the quality of software (a
public good), and concluded that the advantages of open source software were higher for
programmers than nonprogrammers. He also inferred that if most high-paying users were
also programmers, open source or community organization would be more likely (e.g.,
engineering tools or utilities) whereas if most high-paying users were nonprogrammers,
proprietary or closed organization would be more probable (e.g., word processors,
spreadsheets and other products with a broad non-engineering market). Bessen [2002]
also analyzed a self-selection model with consumers helping test and debug different
variants of a complex product with many (interacting) features of which only a fraction
might be valuable to any particular user. He concluded that given open source, individual
users who placed a high enough value on the product would test and debug their own use-
product and that as long as costs were sufficiently low and product complexity
sufficiently high, more use-product combinations would be tested with open source than
under the proprietary case, a larger market would be served, and social welfare would be
higher. Johnson [2002] analyzed a self-selection model with various informational
imperfections and concluded that whether open-source development would increase
when applications had a modular structure depended on whether the developer base
exceeded a critical size; he also provided some finite and asymptotic results of effects of
changing the population size of user programmers and tried to explain why certain useful
programs don’t get written. Xu [2002], with a variant of the same basic model, showed
that decreasing open-source development costs need not necessarily increase the amount
of open-source software development, and proposed several other counterintuitive results
as well. And so on.

A second substrand of the organizational literature has looked somewhat more

broadly at whether open-source software development efforts can be explained as the

 29

outcome of private cost-benefit analysis by user-developers or whether other, less
conventionally economic motivations—e.g., altruism, participation in a gift
economy/culture in which social status depends more on what one gives away than what
one possesses, or even a visceral dislike of Microsoft—need to be invoked to explain
private provision of the public good of improved software quality. Thus, Lerner and
Tirole [2002] argued that conventional cost-benefit analysis may be sufficient once one
accounts for benefits related to career concerns and ego gratification (stemming from
peer recognition) that induce an incentive for an individual to signal high quality through
participation in open source development. They also suggested that signaling incentives
might be strengthened in open source environments by better performance measurement
(given the care with which individual contributors tend to be credited), full initiative by
(empowered) programmers, and greater labor market fluidity/knowledge portability, and
that other factors favorable to open source include modularity, the existence of “fun”
challenges and credible leadership. And in a similar vein, Lakhani and von Hippel
[2002], looked—in the context of Apache—at the performance of the mundane but
essential task of providing high-quality field support (to overcome either defects in the
product or deficiencies in the user’s understanding) and concluded that the need for
explanations such as altruism and even (delayed) signaling benefits was limited by the
inference that most of the effort information-providers expended could be understood in
terms of the direct rewards they derived immediately, i.e., in terms of learning for
themselves.

A third, more miscellaneous substrand of the organizational literature on open-

source has taken the even broader, more inductively-oriented approach of describing the
actual organization of such software development efforts. Thus, three of the core
contributors to the development of Apache, Mockus, Fielding and Herbsleb [2000] built
on their experience of that project, as well as the history of others, including Linux, to
offer some rough numerical requirements for their organization: a core group of
developers, no larger than 15 people, to control the approval and integration of
new/modified code into the ongoing stream of “official” releases—a process more
centralized than most others in open source development—and to create more than 80%
of new functionality, strict code ownership policies to disaggregate open source efforts
that would otherwise be too large, a group larger by an order of magnitude than the core
group to repair defects, and a group another order of magnitude larger yet to report
problems. And the governance of such projects and, specifically, the legal tactics
employed to protect the public property that they create, are discussed by O’Mahony
[2003].

But these and other organizational issues surrounding open source, while

undeniably interesting, are far from the only ones of interest. A second distinct set of
issues concerns the outcomes to and implications of competition between a not-for-profit
open standard priced at zero (e.g., Linux) and a for-profit closed standard (e.g.,
Windows). This competitive strand of research on open-source software is much less
developed than the organizational strand discussed above even though the rhetoric about
it—open source as innovation savior vs. destroyer—can get quite heated. While papers
that focus on the relative efficiency of open and closed development models are obvious
reference points, they generally neglect interactions between the two models and the
effects of moving late vs. early in determining competitive outcomes (e.g., Kogut and

 30

Metiu [2001]). Still, some specific analytical contributions are worth noting. Bitzer
[2000] proposed a simple model to make the point that the less the heterogeneity in
product space between open source and closed software, the more likely competition is to
collapse prices below the levels necessary to support the proprietary software developer’s
(higher) average costs and lead it to abandon its development efforts. Dalle and Jullien
[2002] employed a simulation approach to establish that that increasing returns associated
with creativity and their (re)distribution toward end-users could create global and local
positive externalities strong enough to help Linux reverse current standardization on
Windows 2000. And Schmidt and Schnitzler [2002] set up a simple, essentially static
model of Hotelling-like horizontally differentiated competition between an open-source
product and a for-profit closed product and showed that within that setup, forced (by the
government) procurement of the open-source product would unambiguously reduce
welfare.

None of these papers, however, really embeds the competition between Linux and

Windows in a dynamic model with demand-side learning of the sort suggested by the
previous section. Such a model is presented in Section III of this paper.

 31

Appendix B: Proofs

Proof of Proposition 1. Because Windows is a monopolist, demand is

linear, and unit cost is zero, every period
2
1

≥q . But then () ∞→tyW and

()() .WWW ty αα → Therefore, in the steady state, demand is ()qp W −= 1α .

Proof of Proposition 2. The following three properties of

() () ()yyy LW ααβ −≡ will be used in what follows. First, ()yβ is increasing for all y :

() () () 0>−=

−+
4342143421

dy
yds

dy
yd

dy
yd LW ααβ .

Second,

() () () WLyWyy ysyy αααβ =−= ∞→∞→∞→ limlimlim .

Finally, ()yβ is concave for 0yy > (assumption 4 in Section III).

Microsoft’s problem is

() () ()∫
∞

−

0

max dttptqe rt
tp

 subject to
 () ()()tqstqy −−= 1&

 () ()
()()ty
tptq

β
−=1

 () 00 ≥y
 () 0≥tp

Because we assume that Windows has the advantage in terms of perceived value

at time 0=t , the case in which 1≤s is trivial as Linux can never even get started. To
analyze the more interesting case where Linux’s demand-side learning is superior, we use
standard dynamic programming. Assume 1>s , the current time Hamiltonian is:10

 () () () 







−+








−+








−= ss

y
pmp

y
pH 111

ββ
.

10 For notational simplicity, we omit time dependence of y, m (the Hamiltonian multiplier), and p.

 32

The first order conditions are

() ()()smyp
p
H

+−=⇒=
∂
∂ 1

2
10 β , (A1)

 () ()()
()2

1'
y

smppymrmm
y
Hmr

β
β ++

−=⇒=
∂
∂

− && , (A2)

and

 () () ss
y

pyy
m
H

−+







−=⇒=

∂
∂ 11

β
&& . (A3)

Using (A1), we may rewrite (A2) and (A3) as

() () ()()
()2

222

4
1'

y
smyymrm

β
ββ +−

−=& (A4)

and

 ()() ()
()y

smsyy
β

β
2

11 2++−
=& . (A5)

Now, (A4) and (A5) form a system of differential equations in m and y. Consider

the following two equations

() () ()()
()2

222

4
1'0

y
smyymr

β
ββ +−

−= (A6)

and

 ()() ()2110 smsy ++−= β (A7)

The steady states are all those pairs ym, that satisfy simultaneously equations

(A6) and (A7). We now isolate m in (A6) and (A7) and investigate the shape of the
resulting functions. Solving (A6) for m, we have

() () () ()() ()
()()2

2222

0 1'

1'42

sy

syyryry
mm +






 ++±−

== β

ββββ
& .

There are two cases, one for each sign of the square root. Consider first

 33

() () () ()() ()
()()2

2222

0 1'

1'42

sy

syyryry
mm +






 +++−

== β

ββββ
& (A8)

Notice that (A8) is equal to 0 at 0y such that () 00 =yβ and it is strictly positive

for all 0yy > .

Solving (A7) for m, we have

 ()()
()20 1

1
s
symy +
−

==
β

& . (A9)

Equation (A9) equals 0 at 0y and it is strictly positive for all 0yy > . Taking the

second derivative, we see that 0=ym & is a concave function of y .
Equating (A8) and (A9) we see that there are two steady states. First, because

() ()0
0

0
0 ymym ym == = && ,

0y is a steady state. In this steady state, Windows is out. If 0yy = is ever reached, the

only way for Windows to stay in is by setting () 0=tp forever after. Second, it is easy to
simplify () ()ymym ym 00 == = && to get

()
()

()
s

sr
y
y 1' −
=

β
β . (A10)

Let ssy satisfy equation (A10). Because the function () ()
s

sry 1−β is always increasing

and ()y'β always decreasing, ssy is unique:

 34

Notice that

() ()()
() 00

0
2

00
0

1
1'

1
'

yy

y

yy

m

dy
dm

s
sy

s
y

dy
dm

=

=

=

= =
+

−
>

+
= && ββ .

Therefore, 0=mm & has larger slope at 0y than 0=ym & . In addition,

()

() 020 lim
1

10lim =∞→=∞→ =
+
−

<= yy
W

my m
s

sm &&

α .

Thus, at ssy , 0=mm & cuts 0=ym & from above. (We use this fact to determine the stability of

ssy .) Because 0yy ss > , in this steady state Windows survives in the sense that Microsoft
needs not charge zero price in order to survive.

To sketch the directions of movement compatible with equations (A4) and (A5),

we first consider the locus ym, where 0=m& . At a point AA ym , on the locus (A6),

0=m& is satisfied. At a point AA ykm ,+ , 0>k , above the locus, we have

() () () () ()()
()

0
4

1'
2

222

>
++−

−+
A

AAA
A y

skmyyrkm
β

ββ

thus, 0>m& . Similarly, we see that m is decreasing at points below the 0=m& locus. Next,
consider the points for which 0=y& . At a point BB ym , on the locus (A7), 0=y& is

satisfied. At a point BB ykm ,+ , 0>k , above the locus, we have

()() ()() 011 2 >+++− skmsy BBβ

yss

()y'β

() ()
s

sry 1−β

y0

()y'β

() ()
s

sry 1−β

y

 35

thus, 0>y& . Similarly, it is easy to see that y is decreasing at points below the 0=y& line.

The following phase diagram summarizes the analysis:

Steady state ssy is a saddle point and 0y is unstable. (See Kamien and Schwartz,
1991, page 178, cases (i) and (d), respectively.) To see that the path leading to steady
state ssy is optimal, one can easily check Mangasarian’s sufficient conditions. (See
Seierstad and Sydsæter Theorem 12, page 234.)

We finally have to consider the case in which the solution to solving (A6) for m

is

() () () ()() ()
()()2

2222

0 1'

1'42

sy

syyryry
mm +






 ++−−

== β

ββββ
& .

Replicating the above analysis yields a unique steady state at 0y . This is now a saddle
point. However, phase diagram analysis reveals that along the path to the steady state, the
Hamiltonian multiplier ()tm (which is the marginal valuation of the state variable ()ty at
each moment in time) is always negative. Thus, along this path, an increase in the
difference between the perceived quality of Windows and Linux is detrimental to
Microsoft’s profit. As a consequence, the path cannot be optimal.

Some intuition with regard to the nature of this alternative path is of interest. Notice
that for every cohort, the period profit function (()pπ) is a continuously differentiable,
concave function of p that crosses ()0,0 == πp , attains the unique maximum at ()

2
yβ ,

and crosses once again the point 0=π at ()yp β= . Because Linux is present and an
increase in q results in larger future profit, Microsoft will optimally set () ()()

2
tytp β< (this

is the path characterized in the phase diagram above). However, because of the shape of
()pπ , there is always a price () ()()

2
tytp β> that yields exactly the same level of period

0=m&

0=y&

0y yss y

m

 36

profit. Of course, if Microsoft was to set prices at this level in every period, ()ty would
fall until () 0yty = . This is the (non-profit maximizing) path that corresponds to this
second case.

Proof of Proposition 3.

(a) According to equation (A10), the stable steady state ssy satisfies

()() ()() ()
s

srsysy ssss 1' −
= ββ .

Differentiating implicitly with respect to s, we get

() ()

() () ()() 0
1'''

<
−−

=
srysys

ry
ds

sdy
ssss

ssss

ββ
β .

(b) Differentiate (A10) implicitly with respect to r to get

() ()()

() () () 0
1'''

1
<

−−
−

=
srysy

sy
dr

rdy
ssss

ssss

ββ
β .

(c) That for all finite s , () 0ysy ss > is obvious. Let ∞→s . By equation (A10)

()() ()() ()
s

srss
s

ss
s sysy 1lim'lim −

∞→∞→ = ββ or ()() ()()rsysy ss
s

ss
s ∞→∞→ = limlim' ββ (because

both β and 'β are continuous functions of s). If () 0lim ysyss
s =∞→ , it would have to be

the case that () 0' 0 =yβ , but this contradicts our assumptions. Furthermore, if
() ∞=∞→ syss

slim , it would have to be the case that rWα=0 , but this contradicts our
assumption that 0>Wα . We conclude that () ∞<< ∞→ syy ss

slim0 .

(d) By (A10), as +→1s , we have () 0' →ssyβ . But the only value of y for which

() 0' =yβ is ∞=y . Therefore, it must be that ∞→ssy .

(e) As ∞→r , () ∞→−

s
sr 1 . For ()() ()() ()

s
srssss sysy 1' −= ββ to hold, ()ssyβ must be

sufficiently close to zero. But ()ssyβ only gets arbitrarily close to zero when y is close
to 0y .

(f) See the proof for (d).

Proof of Corollary. Using (A1), (A9), and (A10), we solve for the steady state

price, quantity, and profit:

 37

() ()
()2

ss

1
 and

1

1 +
=

+
=

+
=

s
sy

s
sq

s
yp

ss
ss

ss
ss βπβ .

Notice finally, that for a duopoly to happen in the steady state, it must be the case

that 1>s . Comparing the expressions above to the case of a Windows monopoly proves
the corollary.

Proof of Proposition 6. Solving Microsoft’s problem as in the proof of Proposition

2, we obtain the equation that characterizes the saddle point:

 ()
()

()
()s

ss
r
s

y
y

ss

ss

+−
++−

=
11

11'
ε
ε

β
β . (A11)

Notice that the right hand side is positive for all [)s+∈ 1

1,0ε and negative for (]1,1
1

s+∈ε .
Clearly, when the right hand side of (A11) is negative, there is no ssy (with () 0>ssyβ ,
so that Windows is a player) that satisfies the equation.

Also, rewriting (A11) as

() ()
() ()ssss y

ss
s

r
sy β

ε
εβ =

++−
+−
11

11'

and using the fact that ()

() 0lim 11
11

1
1 =++−

+−
→ +

ss
s

s ε
ε

ε , we see that 0yyss → as s+→ 1
1ε (or as

ε→+ s1
1). Thus, as ε grows (for given s) or s grows (for given ε), Windows is

effectively pushed out by Linux.

Appendix C: Governmental Sponsorship of Linux

Linux camp MS camp Both Linux
and MS

OSS policy
pending or in

place

Policy
exclusively OSS

Policy
encourages

OSS on
case basis

Emotional /
philosophical /

nationalistic
support for

OSS

Official gov't organization to promote OSS Notable projects Institutions on Linux Important factors

Argentina x x x Ututo
Department of Environmental Policy, Secretaría de la Gobernación, the Central Police Department, the
Catholic University

Australia x none, but
considering it

Austria x none none none none none Green Party, primary schools
Belgium x x x Computer Center of the Region of Brussels, Belgian National Army, Royal Botanic Garden
Brazil x x x
Canada none

China x x x Ministry of Education, China Post Office, Hong Kong government Piracy, avoid dependency on
MS

Colombia x
Denmark x none none none none none All schools
European
Commission x x x x IDA? eEurope

Finland x x (not legislation) x (not legislation) gov't-led Linux seminars for employees

France x x x x Agency for Technologies of Information and
Communication in Administration (ATICA) Culture, Defense, Justice, Finance, and Education Ministries; National Crime Register; universities;

Germany x x x Dortmund e-gov't
Federal Institute of Agriculture and Food, Administration of the German Parliament, Council of the Eldest,
Police in Lower Saxony, Ministry for Inner Affairs, Municipality of the city of Munich, Institute for Livestock
Breeding

security (avoid monoculture
of software), cost savings

Ghana x none none none none none telephone billing system
Goa Goa Schools Computer Project (Red Hat)
India x x x
Italy x x x
Japan x x
Kenya x
Korea x not sure

Malaysia x x
Malaysian National Computer Confederation's
Open Source Special Interest Group's
(MNCC-OSSIG)

Mexico x none none none none Red Escolar - botched implementation in schools all areas of capital administration

Nambia x SchoolNet Nambia
NATO x none none none none
Nepal not sure school system project
Netherlands x action plan

New Zealand
none, but

considers OS as
option

Housing New Zealand, OpenLDAP

Nigeria ? no info
Norway x none
Pakistan x unclear x Technology Resource Mobilization Unit e-governance, rural schools
Peru x x x

Philippines x
none yet, though

may move towards
it

Poland none yet Hotel Jan Sobieski III Polish Customs
Portugal x x x
Russia x
Senegal x

Singapore ?
none, but

considering gov't
usage

South Africa x x x x
Government Information Technology Officers
Council (GITOC) working group on Open
Source

Spain proposed Extramadura school district Senate, Nuclear Security Council, Ministry of Home Affairs, Ministry of Justice, Ministry of Public
Administration (MAP project)

Sweden x x x
Switzerland x
Taiwan x national plan

Thailand x support, but no
policy SchoolNet

Uganda vibrant
community none

UK x x x National Health Service, e-Government

US x TX, OR, OK, CA x x
departments of Agriculture, Education, Energy, Health and Human Services, Housing and Urban
Development, Labor, Treasury and Veterans Affairs, Navy, Air Force, the Federal Aviation Administration
and the Defense Department, Department of Transportation, D

Venezuela x x x banks

Tables & Exhibits

Table 1 Market Share for Server Operating Systems

System 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Microsoft 7.0% 18.1% 25.6% 35.3% 38.3% 38.1% 38.5% 39.5% 40.5% 41.0%
Novell 39.6% 34.7% 32.1% 26.7% 22.8% 19.1% 15.0% 13.0% 12.0% 10.0%
Linux 0.0% 0.0% 6.5% 6.8% 15.8% 24.8% 30.0% 34.0% 36.0% 38.0%
Unix 28.6% 25.4% 20.1% 20.9% 18.8% 15.5% 15.0% 13.0% 12.0% 10.0%
Other 11.0% 8.0% 4.5% 3.9% 1.3% 1.0% 5.0% 3.0% 2.0% 2.0%

Sources: IDC, Brian Silverman, “Sun Microsystems, Inc.: Solaris Strategy,” HBS (February 2, 2001): 9-701-058.

Table 2 Linux vs. Microsoft Costs: Typical File/Print Server Network

Baseline: Linux Microsoft

Users supported 1,000 1,000
Number of servers required 1 4
Software:
OS license per server $99 $4000
Client license $0 $128
Total software cost $99 $144,000
Hardware:
Cost per server $6,000 $6,000
Installation/server $250 $250
Total hardware cost $6,250 $25,000
Integration:
Time per server 32 16
Cost per hour $250 $125
Total integration costs $8000 $8,000
Total Cost: $14,349 $177,000

Source: Boston Consulting Group

Table 3 Open-Source Threats to Microsoft

Products 2000 revenue
($M)

% of
Total

Risk
Level

Open Source attackers

Server OS
NT Server 1,377 6% High Linux, Apache, BSD, Gnome
Windows 2000 1,836 8% High Gnome, KDE, SendMail, *BSD, PHP Perl

Client OS
Windows 98/ME 4,560 20% Medium Linux, GNOME, Helix, Eazel
NT Workstation 1,607 7% High Linux, GNOME, KDE

Applications
MS Office 8,611 38% Low Open Office, Gnumerics, K-Office
Exchange Server 942 4% Medium Sendmail
SQL Server 914 4% High MySQL, PostGRES, InPRISE, SAP
Internet Explorer 791 3% Medium Mozilla

Others
MSN 2,089 9% NA
Misc 229 1% NA

TOTAL 22,956 100%

Source: Tucker Anthony Capital Markets

 40

References

Argentesi, Elena, Matteo Alvisi, and Emanuela Carbonara. “Piracy and Quality Choice

in Monopolistic Markets.” SSRN Electronic Paper Collection, no. 341960
(September 2002).

Arrow, Kenneth J. “Optimal Capital Policy, the Cost of Capital and Myopic Decision
Rules,” Annals of the Institute of Statistics and Mathematics, Tokyo, Vol. 16, pp.
21-30 (1964).

Bessen, Jim. “Open Source Software: Free Provision of a Complex Public Good.” Open
Source Research Community – MIT (2002).

Bitzer, Jürgen, and Philipp J. H. Schröder. “Bug-Fixing and Code-Writing: The Private
Provision of Open Source Software.” Discussion Papers of DIW Berlin from,
German Institute for Economic Research, no. 296 (September 2002).

Dalle, Jean-Michel, and Nicolas Jullien. “'Libre' Software: Turning Fads into
Institutions?” Working Paper, forthcoming in Research Policy (2002).

David, Paul. “CLIO and the Economics of QWERTY.” American Economic Review:
Papers and Proceedings 75 (1985): 332-337.

Dolley, Andrew. “IBM Claims SCO Conspiring with Microsoft over Linux,” ZDNet
Australia, July 30, 2003 (at http://www.zdnet.co.nz/newstech/enterprise/story,
accessed on August 6, 2003).

Farrell, Joseph and Garth Saloner. “Standarization, Compatibility, and Innovation.” Rand
Journal of Economics 16 (1985): 70-83.

Farrell, Joseph and Garth Saloner. “Installed Base and Compatibility: Innovation, Product
Preannouncements, and Predation.” American Economic Review 76 (1986): 940-
955.

Foster, Richard. Innovation : The attacker’s advantage. New York: Summit Books
(1986).

Fuller, Thomas. “How Microsoft Warded off Rival,” New York Times, May 15, 2003.

Johnson, Justin Pappas. “Open Source Software: Private Provision of a Public Good.”
Journal of Economics and Management Strategy 11, no. 4 (2002): 637-62.

Kamien, Morton and Nancy Schwartz. Dynamic Optimization. Elsevier Health Sciences;
4th reprint 2000 edition (October 1, 1991).

Kogut, Bruce, and Anca Metiu. “Open-Source Software Development and Distributed
Innovation.” Oxford Review of Economic Policy 17, no. 2 (2001): 248-64.

 41

Kuan, Jenny. “Understanding Open Source Software: A Nonprofit Competitive Threat.”
Working Paper (September 23, 1999).

Lakhani, Karim R., and Eric von Hippel. “How Open Source Software Works: “Free”
User-to-User Assistance.” MIT Sloan School of Management Working Paper, #
4117 forthcoming in Research Policy (June 2002).

Lerner, Josh, and Jean Tirole. “Some Simple Economics of Open Source.” Journal of
Industrial Economics 50, no. 2 (2002): 197-234.

Mockus, Audris, Roy T. Fielding, and James D. Herbsleb. “A Case Study of Open
Source Software Development: The Apache Server.” Paper presented at the ICSE
2000, Proceedings of the 22nd International Conference on Software Engineering,
Limerick Ireland, June 4-11, 2000.

O’Mahony, Siobhán. “Guarding the Commons: How Community Managed Software
Projects Protect Their Work.” Stanford Working Paper Collection, forthcoming,
2003, Research Policy 2002).

Ross, David R. “Learning to Dominate.” The Journal of Industrial Economics, Vol. 34,
No. 4. (Jun., 1986), pp. 337-353.

Schmidt, Klaus M., and Monika Schnitzer. “Public Subsidies for Open Source? Some
Economic Policy Issues of the Software Market.” SSRN Electronic Paper
Collection (July 12 2002): 37.

Seierstad, Atle and K. Sydsæter. Optimal Control Theory with Economic Applications.
North-Holland; 3rd reprint 2002 edition (1st edition: February 1, 1987).

Silverman, Brian. “Sun Microsystems, Inc.: Solaris Strategy,” HBS case 9-701-058.
February 2, 2001.

Spence, A. Michael. “The Learning Curve and Competition.” The Bell Journal of
Economics, Vol. 12, No. 1. (Spring, 1981), pp. 49-70.

Thorn, Brian K., and Connolly, Terry. “Discretionary Data Bases: A Theory and Some
Experimental Findings.” Communication Research, Vol 4.5, October, 1987, 512-
528.

Xu, Xiaopeng. “Development Costs and Open Source Software.” Working Paper
(2002).

