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1. Introduction 

 

Accurate modelling of volatility (or risk) is of paramount importance in finance. As risk 

is unobservable, several modelling procedures have been developed to measure and 

forecast risk. The Generalised Autoregressive Conditional Heteroskedasticity (GARCH) 

model of Engle (1982) and Bollerslev (1986) have subsequently led to a family of 

autoregressive conditional volatility models. The success of GARCH models can be 

attributed largely to their ability to capture several stylised facts of financial returns, such 

as time-varying volatility, persistence and clustering of volatility, and asymmetric 

reactions to positive and negative shocks of equal magnitude. This has also contributed to 

the modelling and forecasting of Value-at-Risk (VaR) thresholds. 

 

As financial applications typically deal with a portfolio of assets and risks, there are 

several multivariate GARCH models which specify the risk of one asset as depending 

dynamically on its own past risk as well as on the past risk of other assets (see McAleer 

(2005) for a discussion of a variety of univariate and multivariate conditional and 

stochastic volatility models). A volatility spillover is defined as the impact of any 

previous volatility of asset i on the current volatility of asset j, for any i � j. A similar 

definition applies for returns spillovers. da Veiga and McAleer (2005) showed that the 

multivariate VARMA-GARCH model of Ling and McAleer (2003) and VARMA-

Asymmetric GARCH (or VARMA-AGARCH) model of Hoti et al. (2003) provided 

superior volatility and VaR threshold forecasts than their nested univariate counterparts, 

namely the GARCH model of Bollerslev (1986) and the GJR model of Glosten, 

Jagannathan and Runkle (1992), respectively.  

 

Multivariate extensions have great intuitive and empirical appeal as they enable 

modelling of the relationship between subsets of the portfolio and allow for scenario and 

sensitivity analyses. Moreover, their structural and asymptotic properties have been well 

established, especially for multivariate GARCH models (for further details, see Ling and 

McAleer (2003) and Hoti et al. (2003), which extend the results for a range of univariate 

GARCH models in Ling and McAleer (2002a, b)). However, the practical usefulness of 
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this result can be affected by the computational difficulties in estimating the VARMA-

GARCH and VARMA-AGARCH models for a large number of assets, as the number of 

parameters to be estimated can increase dramatically with the number of assets, and 

hence spillover effects. 

 

Several parsimonious multivariate models have been proposed to deal with the over-

parameterization problem. The CCC model of Bollerslev (1990), the Dynamic 

Conditional Correlation (DCC) model of Engle (2002), and the Varying Conditional 

Correlation (VCC) model of Tse and Tsui (2002) use a two-step estimation procedure to 

facilitate estimation. McAleer et al. (2005) extended these conditional correlation models 

by specifying the shocks to returns as being time dependent, and established the structural 

and asymptotic properties of the more general model. The Orthogonal GARCH (O-

GARCH) model of Alexander (2001) uses principal component analysis to reduce the 

number of parameters to be estimated.  

 

The need to develop volatility models to estimate accurately large covariance matrices 

has become especially relevant following the 1995 amendment to the Basel Accord, 

whereby banks were permitted to use internal models to calculate their VaR thresholds. 

This amendment was a reaction to widespread criticism that the ‘Standardized’ approach, 

which banks were originally required to use in calculating their VaR thresholds, led to 

excessively conservative forecasts. Excessive conservatism has a negative impact on the 

profitability of banks as higher capital charges are subsequently required. While the 

amendment was designed to reward institutions with superior risk management systems, 

a backtesting procedure, whereby the realized returns are compared with the VaR 

forecasts, was introduced to assess the quality of the internal models. Banks using models 

that lead to a greater number of violations than can reasonably be expected, given the 

confidence level, are required to hold higher levels of capital (see the discussion in 

Section 5 and Table 4 for the penalties imposed under the Basel Accord). If a bank’s VaR 

forecasts are violated more than 9 times in a financial year, the bank may be required to 

adopt the ‘Standardized’ approach. The imposition of such a penalty is severe as it has an 

impact on the profitability of the bank directly through higher capital charges, may 
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damage the bank’s reputation, and may also lead to the imposition of a more stringent 

external model to forecast the VaR thresholds. 

 

In this paper we investigate the importance of including spillover effects when modelling 

and forecasting financial volatility. We compare the forecasted conditional variances 

produced by the VARMA-GARCH model of Ling and McAleer (2003), in which the 

conditional variance of asset i is specified to depend dynamically on past squared 

unconditional shocks and past conditional variances of each asset in the portfolio, with 

the forecasted conditional variances produced by the CCC model of Bollerslev (1990), 

where the conditional variance of asset i is specified to depend only on the squared 

unconditional shocks and past conditional variances of  asset i. We also develop a new 

Portfolio Spillover GARCH (PS-GARCH) model, which allows spillover effects to be 

included in a more parsimonious manner. The parsimonious nature of the PS-GARCH 

model is of critical importance to practitioners as the model can be estimated for any 

number of assets, while several other multivariate models can be estimated only for a 

reasonably small number of assets. This parsimonious nature avoids the so-called curse 

of dimensionality that can render many multivariate models impractical in empirical 

applications. This parsimonious model is found to yield volatility and VaR threshold 

forecasts that are very similar to those of the VARMA-GARCH model. Using the 

taxonomy proposed in Bauwens et al. (2005), both the PS-GARCH and VARMA-

GARCH models are nonlinear multivariate extensions of the standard univariate GARCH 

model. 

 

The plan of the paper is as follows. Section 2 presents the new PS-GARCH model, 

discusses alternative multivariate GARCH models with and without spillover effects, and 

presents a simple two-step estimation method for PS-GARCH. The data for four 

international stock market indices are discussed in Section 3, the volatility and 

conditional correlation forecasts produced by alternative multivariate GARCH models 

are examined in Section 4, the economic significance of the VaR threshold forecasts 

arising from the alternative multivariate GARCH models is analysed in Section 5, and 

some concluding remarks are given in Section 6.  
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2.  Models and Estimation 

 

This section proposes a parsimonious and computationally convenient PS-GARCH 

model which captures aggregate portfolio spillover effects, and discusses the structural 

and statistical properties of the model. The new model is compared with two constant 

conditional correlation models, one of which models spillover effects from each of the 

other assets in the portfolio and another which has no spillover effects. 

 

2.1 PS-GARCH 
 

Let the vector of returns on m ( ≥  2) financial assets be given by  
  

 1( | )t t t tY E Y F ε−= +  (1) 

 
where the conditional mean of the returns follows a VARMA process:  

  

 ( )( ) ( )t tL Y Lµ εΦ − = Ψ  (2) 

 
The return on the portfolio consisting of the m assets is denoted as:  

  

 , , , 1 ,
1

( | )
m

p t i t i t t p t
i

Y E x y F ε−
=

= +�  (3) 

  

where ,i ty  denotes the return on asset i at time t and itx  denotes the portfolio weight of 

asset i at time t, such that: 

 

 ,
1

1
m

i t
i

x t
=

= ∀� . (4) 
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The portfolio spillover GARCH (PS-GARCH) model assumes that the returns on the 

portfolio follow an ARMA process, and that the conditional volatility of the portfolio can 

be approximated by a GARCH process, as follows:  

  

 , ,( )( ) ( )p t p p tL Y Lµ εΦ − = Ψ  (5) 

  

 t t tDε η=  (6) 

  

 1/ 2
, , ,p t p t p thε η=  (7) 

  

 2
, , , , ,

1 1

r s

p t p p k p t k p l p t l
k l

h hω α ε β− −
= =

= + +� �  (8) 

  

 2
, ,

1 1 1 1 1

ˆˆ( )
r r s r s

t k t k k t k t k l t l k p t k l p t l
k k l k l

H A C I B H G K hω ε η ε ε− − − − − −
= = = = =

= + + + + +� � � � �
� �

 (9) 

  

where )',...,( 1 mttt hhH = , 1( ,..., ) 'mω ω ω= , )( 2/1
itt hdiagD = , '

1( ,..., )t t mtη η η= , 2 2 '
1( ,..., )t t mtε ε ε=� , 

and 2
,ˆp t kε −  and ,

ˆ
p t lh −  are the fitted values from and (5) and (8), respectively. The m m×  

matrices kA , lB  and kC  are diagonal, with typical elements iiα , iiβ  and iiγ , respectively, 
'

1( ,..., )k mG g g= , '
1( ,..., )l mK k k= , ( ) ( ( ))t itI diag Iη η=  is an mm ×  diagonal matrix, 

1( ) ... p
m pL I L LΦ = − Φ − − Φ  and 1( ) ... q

m qL I L LΨ = − Ψ − − Ψ  are polynomials in L, the lag 

operator, tF  is the past information available to time t, mI  is the mm ×   identity matrix, 

and )( itI η  is an indicator function, given as: 
  

 
1, 0

( )
0, 0.

it
it

it

I
ε

η
ε

≤�
= � >�

 (10) 

  

The indicator function distinguishes between the effects of positive and negative shocks 

of equal magnitude on conditional volatility. Portfolio spillovers arise when kG  and lK  

are not null matrices. 
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Using (6), the conditional covariance matrix for the PS-GARCH model is given by 

ttt DDQ Γ= , for which the matrix of conditional correlations is given by Γ=′)( ttE ηη . 

The matrix Γ  is the constant conditional correlation matrix of the unconditional shocks 

which is, by definition, equivalent to the constant conditional correlation matrix of the 

conditional shocks.  

 

2.2 VARMA-GARCH 
 

The VARMA-GARCH model of Ling and McAleer (2003), which assumes symmetry in 

the effects of positive and negative shocks on conditional volatility, is given by: 

 

 1( | )t t t tY E Y F ε−= +  (11) 

 
 ( )( ) ( )t tL Y Lµ εΦ − = Ψ  (12) 

 
 t t tDε η=  (13) 

 

 
1 1

r s

t k t k l t l
k l

H A B Hω ε − −
= =

= + +� �
�

 (14) 

 
where )',...,( mtitt hhH = , 1( ,..., )'mω ω ω= , )( 2/1

,tit hdiagD = , )',...,( , mttit ηηη = , 

2 2 '( ,..., )t it mtε ε ε=� , kA  and lB  are mm ×  matrices with typical elements ijα  and ijβ , 

respectively, for mji ,...,1, = , ))(()( itt IdiagI ηη =  is an mm ×  matrix, 

1( ) ... p
m pL I L LΦ = − Φ − − Φ  and 1( ) ... q

m qL I L LΨ = − Ψ − − Ψ  are polynomials in L, the 

lag operator, and tF  is the past information available to time t. Spillover effects are given 

in the conditional volatility for each asset in the portfolio, specifically where kA  and lB  

are not diagonal matrices. Based on equation (13), the VARMA-GARCH model also 

assumes that the matrix of conditional correlations is given by Γ=′)( ttE ηη .  
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An extension of the VARMA-GARCH model is the VARMA-AGARCH model of Hoti 

et al. (2002), which captures the asymmetric spillover effects from each of the other 

assets in the portfolio. The VARMA-AGARCH model is also a multivariate extension of 

the univariate GJR model.  

 

2.3 CCC 
 

The VARMA-GARCH, VARMA-AGARCH and PS-GARCH models have several 

popular constant conditional correlation univariate and multivariate models as special 

cases. If the model given by equation (14) is restricted so that kA  and lB  are diagonal 

matrices, the VARMA-GARCH model reduces to: 

  

 , ,
1 1

r s

it i i i t k i i t l
k l

h hω α ε β− −
= =

= + +� �  (15) 

 

which is the constant conditional correlation (CCC) model of Bollerslev (1990). The 

CCC model also assumes that the matrix of conditional correlations is given by 

Γ=′)( ttE ηη . As given in equation (15), the CCC model does not have volatility spillover 

effects across different financial assets, and hence is intrinsically univariate in nature. 

Moreover, CCC also does not capture the asymmetric effects of positive and negative 

shocks on conditional volatility.  

 
2.4 Estimation 
 

The parameters in models (11), (14), (15) can be obtained by maximum likelihood 

estimation (MLE) using a joint normal density, namely: 

 

 ( )' 1

1

1ˆ arg min log
2

n

t t t t
t

Q Q
θ

θ ε ε−

=
= +�  (16) 
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where θ  denotes the vector of parameters to be estimated in the conditional log-

likelihood function, and tQ  denotes the determinant of tQ , the conditional covariance 

matrix. When ηt does not follow a joint multivariate normal distribution, equation (16) is 

defined as the Quasi-MLE (QMLE). 

 

The models described above can also be estimated using the following simple two-step 

estimation procedure: 

 
(1) For each financial index return series, the univariate GARCH (1,1) model with an 

AR(1) conditional mean specification is estimated, and the unconditional shocks and 

standardized residuals of all m returns are saved. 

(2) For the portfolio returns, as defined by equation (3), the univariate GARCH (1,1) 

model with VARMA(1,1) conditional mean specification is estimated, and the 

unconditional shocks and standardized residuals are saved. 

(3) For each financial returns series, the univariate VARMA(1,1)-GARCH(1,1) model is 

estimated, including the lagged squared unconditional shocks and the lagged 

conditional variances of the remaining m-1 assets. The standardized residuals of the 

m-1 financial returns are saved. 

(4) For each financial returns series, the VARMA(1,1)-PS-GARCH(1,1) model is 

estimated, including the lagged squared unconditional shocks and the lagged 

conditional variances from step (2). The standardized residuals of all m financial 

returns are saved. 

(5) For each returns series, the constant conditional correlation matrices of the 

VARMA(1,1)-GARCH(1,1) model are estimated by direct computation using the 

standardized residuals from step (3). Bollerslev's (1990) CCC matrix is estimated 

directly using the standardized residuals from step (1). Finally, the constant 

conditional correlation matrix of the PS-GARCH model is estimated using the 

standardized residuals from step (4). 

 

The tests of spillover and asymmetric effects are valid under the null hypothesis of 

independent (that is, no spillovers) and symmetric effects, so that steps (3) and (4) are 
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valid under the joint null hypothesis. The primary purpose of the structural and 

asymptotic theory derived in Ling and McAleer (2003) is to demonstrate that such testing 

is statistically valid.  

 

Using extensions of the structural ands asymptotic properties derived in Ling and 

McAleer (2003), Hoti et al. (2002) and McAleer et al. (2005), it can be shown that the 

QMLE of the parameters in the PS-GARCH model are consistent and asymptotically 

normal in the absence of normality in the standardized shocks tp,η  in (7) (the proof is 

available on request). 

 

The VARMA-GARCH and VARMA-AGARCH models are available as pre-

programmed options in, for example, the RATS 6 econometric software package. In this 

paper, estimation was undertaken using the EViews 5.1 econometric software package, 

although the results were very similar using RATS 6. 

 

3.  Data 
 
The data used in the empirical application are daily prices measured at 16:00 Greenwich 

Mean Time (GMT) for four international stock market indices (henceforth referred to as 

synchronous data), namely S&P500 (USA), FTSE100 (UK), CAC40 (France), and SMI 

(Switzerland). New York and London are widely regarded as the two most important 

global markets, while Paris and Zurich are selected for purposes of examining spillovers 

using synchronous data. All prices are expressed in US dollars. The data were obtained 

from DataStream for the period 3 August 1990 to 5 November 2004, which yields 3720 

observations. At the time the data were collected, this period was the longest for which 

data on all four variables were available. The rationale for employing daily synchronous 

data in modelling stock returns and volatility transmission is four-fold. 

 

First, the Efficient Markets Hypothesis would suggest that information is quickly and 

efficiently incorporated into stock prices. While information generated yesterday may be 
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significant in explaining stock price changes today, it is less likely that news generated 

last month would have any explanatory power today. 

 

Second, it has been argued by Engle et al. (1990) that volatility is caused by the arrival of 

unexpected news and that volatility clustering is the result of investors reacting 

differently to news. The use of daily data may help in modelling the interaction between 

the heterogeneity of investor responses in different markets. 

 

Third, studies that use close-to-close non-synchronous returns suffer from the non-

synchronicity problem, as highlighted in Scholes and Williams (1977). In particular, 

these studies cannot distinguish a spillover from a contemporaneous correlation when 

markets with common trading hours are analysed. Kahya (1997) and Burns et al. (1998) 

also observe that, if cross market correlations are positive, the use of close-to-close 

returns for non-synchronous markets will underestimate the true correlations, and hence 

underestimate the true risk associated with a portfolio of such assets. 

 

Finally, the use of synchronous data allows the system to be written in a simultaneous 

equations form, which can be estimated jointly. Such joint estimation of the parameters 

eliminates potential econometric problems associated with generated regressors, in which 

unobserved variables are obtained (or generated) through estimation of auxiliary 

regression models (see, for example, Pagan (1984) and Oxley and McAleer (1993, 

1994)), improves efficiency in estimation, increases the power of the test for cross-market 

spillovers, and analyses market interactions simultaneously. This allows all the 

relationships to be tested jointly. Joint estimation is also consistent with the notion that 

spillovers are the impact of global news on each market. 

 

The synchronous returns for each market  i  at time  t )( ,tiR  are defined as: 

 

 , , 1log( / )it i t i tR P P −=  (17) 
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where tiP ,  is the price in market i  at time t, as recorded at 16:00 GMT.  

 

The descriptive statistics for the synchronous returns of the four indexes are given in 

Table 1. All series have similar means and medians at close to zero, minima which vary 

between -10.251 and -5.533, and maxima that range between 5.771 and 10.356. Although 

the four standard deviations vary slightly, the coefficients of variation (CoV) are quite 

different, ranging from 30.97 for S&P500 to 67.30 for CAC40. The skewness differs 

among all four series, but the kurtosis is reasonably similar for all series. The Jarque-Bera 

test strongly rejects the null hypothesis of normally distributed returns, which may be due 

to the presence of extreme observations. As each of the series displays a high degree of 

kurtosis, this would seem to indicate the existence of extreme observations. Each of the 

returns series exhibits clustering, which needs to be captured by an appropriate time 

series model.  

 

 [Insert Table 1 here] 

 

Several definitions of volatility are available in the literature. This paper adopts the 

measure of volatility proposed in Franses and van Dijk (2000), where the true volatility 

of returns is defined as: 

 

 2
, , , 1( ( | ))i t i t i t tV R E R F −= −  (18) 

 

where 1−tF  is the information set at time t-1. 

 

The plots of the volatilities of the synchronous returns are given in Figures 1a-d. Each of 

the series exhibits clustering, which needs to be captured by an appropriate time series 

model. The volatility of all series appears to be high during the early 1990’s, followed by 

a quiet period from the end of 1992 to the beginning of 1997. Finally, the volatility of all 

series appears to increase dramatically around 1997, due in large part to the Asian 

economic and financial crises. This increase in volatility persists until the end of the 



 13 

period, and is likely to have been affected by the September 11, 2001 terrorist attacks and 

the conflicts in Afghanistan and Iraq.  

 

[Insert Figures 1a-d here] 

 

The descriptive statistics for the volatility of the synchronous returns of the four indexes, 

although not reported here, indicate that CAC40 displays the highest mean (median) 

volatility at 2.029 (0.665), while FTSE100 has the lowest mean (median) volatility at 

1.357 (0.425). The maxima of the four volatility series differ substantially, with SMI 

displaying the highest maxima and S&P500 displaying the lowest. Although the four 

standard deviations vary, the coefficients of variation (CoV) are similar. All series are 

highly skewed. As each of the series displays a high degree of kurtosis, this would seem 

to indicate the existence of extreme observations. 

 

4. Value-at-Risk 

 

Formally, a VaR threshold is the lower bound of a confidence interval for the mean. 

Suppose that interest lies in modelling the random variable  Yt , which can be decomposed 

as follows: 

 

   Yt = E(Yt | Ft −1) + ε t  (19) 

 

This decomposition suggests that  Yt  is comprised of a predictable component, 

  E(Yt | Ft −1) , which is the conditional mean, and a random component,  εt . The variability 

of  Yt , and hence its distribution, is determined entirely by the variability of  εt . If it is 

assumed that  εt  follows a distribution such that: 

  

 ( , )t t tDε µ σ�  (20) 
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where  µt  and  σ t  are the unconditional mean and standard deviation of  εt , respectively, 

these can be estimated using a variety of parametric and/or non-parametric methods. The 

procedure used in this paper is discussed in Section 3. The VaR threshold for  Yt  can be 

calculated as: 

 

 1( | )t t t tVaR E Y F ασ−= −  (21) 

 

where α  is the critical value from the distribution of  εt  to obtain the appropriate 

confidence level. Alternatively,  σ t  can be replaced by alternative estimates of the 

conditional variance to obtain an appropriate VaR (see Section 2 above).  

 

5. Forecasts 

 

The purpose of this section is to compare the volatility and conditional correlation 

forecasts produced by the CCC model of Bollerslev (1990), the VARMA-GARCH model 

of Ling and McAleer (2003), and the new PS-GARCH model proposed in this paper. A 

rolling window approach is used to forecast the 1-day ahead conditional correlations and 

conditional variances. The sample ranges from 3 August 1990 to 5 November 2004. In 

order to strike a balance between efficiency in estimation and a viable number of rolling 

regressions, the rolling window size is set at 2000 for all four data sets, which leads to a 

forecasting period from 6 April 1998 to 5 November 2004.  

 

[Insert Figure 2 here] 

 

Figures 1a-d plot the forecasted volatilities using the three models for an equally 

weighted portfolio containing S&P500, FTSE100, CAC40 and SMI. Table 2 shows the 

correlations between the three sets of forecasts. The volatility forecasts produced by all 

models are remarkably similar, with correlation coefficients of the volatility forecasts 

ranging from 0.987 to 0.993. 
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[Insert Table 2 here] 

 

The forecasted conditional correlations and the correlation of the conditional correlation 

forecasts are given in Figures 3-8 and Table 3, respectively. The conditional correlation 

forecasts are virtually identical for all three models, with correlation coefficients ranging 

from 0.996 to 0.999. This result suggests that for applications where the required inputs 

are the forecasts of the conditional variances and/or the conditional correlation matrix, all 

three models considered above yield very similar results. 

 

[Insert Figures 3-8 here] 

[Insert Table 3 here] 

 

6. Economic Significance  

 

The 1988 Basel Capital Accord, which was originally concluded between the central 

banks from the Group of Ten (G10) countries, and has since been adopted by over 100 

countries, sets minimum capital requirements which must be met by banks to guard 

against credit and market risks. The market risk capital requirements are a function of the 

forecasted VaR thresholds (see Section 4 above). The Basel Accord stipulates that the 

daily capital charge must be set at the higher of the previous day’s VaR or the average 

VaR over the last 60 business days multiplied by a factor k. The multiplicative factor k is 

set by the local regulators, but must not be lower than 3.  

 

In 1995, the 1988 Basel Accord was amended to allow banks to use internal models to 

determine their VaR. However, banks wishing to use internal models must demonstrate 

that the models are sound. Furthermore, the Basel Accord imposes penalties in the form 

of a higher multiplicative factor k on banks which use models that lead to a greater 

number of violations than would reasonably be expected given the specified confidence 

level of 1%. Table 4 shows the penalties imposed for a given number of violations for 

250 business days.  
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In certain cases, where the number of violations is deemed to be excessively large, 

regulators may penalize banks even further by requiring that their internal models be 

reviewed. In circumstances where the internal models are found to be inadequate, banks 

can be required to adopt the standardized method originally proposed in 1993 by the 

Basel Accord. The standardized method suffers from several drawbacks, the most 

noticeable of which is its systematic overestimation of risk, which stems from the 

assumption of perfect correlation across different risk factors. Overestimating risk leads 

to higher capital charges which negatively impact both the profitability and reputation of 

the bank. 

 

[Insert Table 4 here] 

 

The economic significance of the various models proposed above is highlighted by 

forecasting VaR thresholds using the PS-GARCH, VARMA-GARCH and CCC models 

(see Jorion (2000) for a detailed discussion of VaR). In order to simplify the analysis, it is 

assumed that the portfolio returns are normally distributed, with equal and constant 

weights. We control for exchange rate risk by converting all prices to a common 

currency, namely the US Dollar. We use the forecasted variances and correlations from 

Section 4 to produce VaR forecasts for the period 6 May 1998 to 5 November 2004. The 

backtesting procedure is used to test the soundness of the models by comparing the 

realised and forecasted losses (see Basel Committee (1988, 1995, 1996) for further 

details). 

 

Figures 9-11 show the VaR forecasts and realized returns for each empirical model 

considered. Both the CCC and PS-GARCH VaR forecasts violate the thresholds 7 times 

from 1720 forecasts, while the VARMA-GARCH model leads to 6 violations from 1720 

forecasts. 

 

Table 5 shows that the mean daily capital charge, which is a function of both the penalty 

and the forecasted VaR, implied by PS-GARCH is the largest at 9.180%, followed by 

VARMA-GARCH at 9.051% and CCC at 9.009%. A high capital charge is undesirable, 
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other things equal, as it reduces profitability. Table 5 also shows that CCC leads to 

violations that are approximately 10% greater in terms of mean absolute deviations, at 

0.498, than the VARMA-GARCH and PS-GARCH models, at 0.454 and 0.442, 

respectively. This is particularly important because large violations, on average, may lead 

to bank failures, as the capital requirements implied by the VaR threshold forecasts may 

be insufficient to cover the realized losses. Finally, CCC also leads to the largest 

maximum violation.  

 

[Insert Figures 9-11 here] 

[Insert Table 5 here] 

 

7. Conclusion 

 

Accurate modelling of volatility (or risk) is important in finance, particularly as it relates 

to the modelling and forecasting of Value-at-Risk (VaR) thresholds. As financial 

applications typically deal with a portfolio of assets and risks, there are several 

multivariate GARCH models which specify the risk of one asset as depending 

dynamically on its own past, as well as the past of other assets. These models are 

typically computationally demanding, due to the large number of parameters to be 

estimated, and can be impossible to estimate for a large number of assets.  

 

The need to create volatility models that can be used to estimate large covariance 

matrices has become especially relevant following the 1995 amendment to the Basel 

Accord, whereby banks are permitted to use internal models to calculate their VaR 

thresholds. While the amendment was designed to reward institutions with superior risk 

management systems, a backtesting procedure in which the realized returns are compared 

with the VaR forecasts, was introduced to assess the quality of the internal models. Banks 

using models that lead to a greater number of violations than can reasonably be expected, 

given the confidence level, are penalized by having to hold higher levels of capital. The 

imposition of penalties is severe as it has an impact on the profitability of the bank 
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directly through higher capital charges, may damage the banks reputation, and may also 

lead to the imposition of a more stringent external model to forecast the VaR thresholds.  

 

This paper examined various conditional volatility models for purposes of forecasting 

financial volatility and VaR thresholds. Two constant conditional correlation models for 

estimating the conditional variances and covariances are the CCC model of Bollerslev 

(1990) and the VARMA-GARCH model of Ling and McAleer (2003). Although the 

VARMA-GARCH model accommodates spillover effects from the returns shocks of all 

assets in the portfolio, which are typically estimated to be significantly different from 

zero, the forecasts of the conditional volatility and VaR thresholds produced by the 

VARMA-GARCH model are very similar to those produced by the CCC model.  

 

Finally, the paper also developed a new parsimonious and computationally convenient 

Portfolio Spillover GARCH (PS-GARCH) model, which allowed spillover effects to be 

included parsimoniously. The PS-GARCH model was found to yield volatility and VaR 

threshold forecasts that were very similar to those of the CCC and VARMA-GARCH 

models. Therefore, although the empirical results suggest that spillover effects are 

statistically significant, the VaR threshold forecasts are generally found to be insensitive 

to the inclusion of spillover effects in the multivariate models considered. 
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Table 1: Descriptive Statistics for Returns 

 Statistics S&P500 FTSE100 CAC40 SMI 

 Mean 0.033 0.020 0.020 0.036 

 Median 0.029 0.013 0.043 0.037 

 Maximum 5.771 8.336 10.356 7.049 

 Minimum -5.533 -5.681 -10.251 -9.134 

 Std. Dev. 1.022 1.067 1.346 1.164 

 Skewness -0.018 0.118 0.015 -0.120 

 Kurtosis 6.160 6.254 7.391 7.044 

 CoV 30.97 53.35 67.30 32.33 

 Jarque-Bera 1548.4 1649.5 2989.0 2543.4 

 

 

 

Table 2: Correlations Between Conditional 
Volatility Forecasts for the Portfolio 

CCC VARMA-GARCH PS-GARCH 
1 0.987 0.993 
  1 0.991 

    1 
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Table 3: Correlations of Rolling Conditional Correlation Forecasts Between Pairs of Indexes 

S&P500 and FTSE100 S&P500 and CAC40 

CCC 
VARMA-

GARCH 
PS-GARCH CCC 

VARMA-

GARCH 
PS-GARCH 

1 0.996 0.999 1 0.996 0.998 

 1 0.997  1 0.997 

  1   1 

S&P500 and SMI FTSE100 and CAC40 

CCC 
VARMA-

GARCH 
PS-GARCH CCC 

VARMA-

GARCH 
PS-GARCH 

1 0.995 0.999 1 0.992 0.996 

 1 0.996  1 0.996 

  1   1 

FTSE100 and SMI CAC40 and SMI 

CCC 
VARMA-

GARCH 
PS-GARCH CCC 

VARMA-

GARCH 
PS-GARCH 

1 0.984 0.995 1 0.998 0.996 

 1 0.992  1 0.996 

  1   1 
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Table 4: Basel Accord Penalty Zones 

Zone Number of Violations Increase in k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

Note: The number of violations is given for 250 business days. 

 

 

 

Table 5: Mean Daily Capital Charge and AD of Violations  

AD of Violations 

Model 

Number 

of 

Violations 

Mean Daily 

Capital 

Charge 
Maximum  Mean  

CCC 7 9.009 2.125 0.498 

VARMA-GARCH 6 9.760 1.974 0.454 

PS-GARCH 7 9.180 1.902 0.442 

Notes:  
(1) The daily capital charge is given as the negative of the higher of the previous day’s VaR or the 
average VaR over the last 60 business days times (3+k), where k is the penalty. 
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Figure 9: Realized Returns and CCC VaR Forecasts
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Figure 10: Realized Returns and VARMA-GARCH VaR Forecasts
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Figure 11: Realized Returns and PS-GARCH VaR Forecasts

 


