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ABSTRACT  
 

A new method, called Relevant Transformation of the Inputs Network Approach 
(RETINA) is proposed as a tool for model building. It is designed around flexibility (with 
nonlinear transformations of the predictors of interest), selective search within the range 
of possible models, out-of-sample forecasting ability and computational simplicity. In 
tests on simulated data, it shows both a high rate of successful retrieval of the DGP which 
increases with the sample size and a good performance relative to other alternative 
procedures. A telephone service demand model is built to show how the procedure 
applies on real data.  

                                                 
1 Comments by participants in the 13th EC2 conference “Model Selection and Evaluation” are gratefully 
acknowledged. The referees’ comments were very insightful and led (we hope) to a better presentation of 
the material here. Thanks are also due to Niels Haldrup for his suggestions and his patience and for giving 
us encouragement and support throughout the revision process. The usual disclaimer applies. 



I.  Introduction 
 

In the process of model building, a decision must be made as to which among several 

specifications (possibly belonging to different classes of models) should be chosen to 

represent a relationship between a dependent variable and other variables of interest. 

Among these, one may prefer a parametric specification (either linear or nonlinear) where 

some interpretation of parameter values may be retained, or else suggest the adoption of 

flexible functional forms where the relationship among the variables is guided by other 

criteria of explanatory power.  

Within each class of models, specification selection is far from trivial2: some methods 

focus on the relationship between a model and its interpretability according to some 

theory, others are based on hypothesis testing between competing models; some depend 

upon the trade-off between explanatory power and parsimony in the retained 

specification,  others are based on the performance of a model in explaining a set of data 

not used for estimation, especially when the flexibility of the specification tested in-

sample may signal overparameterization when applied out-of-sample; and so on. The 

lively debate spurred by the paper by Hoover and Pérez (1999, and the discussions 

contained in the same issue of the Econometrics Journal) and the contributions provided 

at the 2002 EC2 conference in Bologna are a proof that the question, far from being 

resolved, is receiving a great deal of interest, especially in the attempt to produce an 

automated procedure capable of paralleling the ever-growing computing power available 

to researchers. 

No approach is perfect, especially when misspecification of a model relative to the 

process which generated the data is always a possibility; hence all approaches to model 

selection have their particular limitations. Hypothesis testing in support of model choice 

is well-known to be potentially dangerous (cf. Granger et al., 1995) given the implicit 

advantage attributed to the model under the null hypothesis in a nested framework or the 

possible ambiguity of results in a non-nested context. Moreover, one of the undesirable 

aspects of such an approach is the need to resort to pairwise comparisons. 

                                                 
2 An excellent compendium of issues on statistical model selection is the book by Burnham and Anderson 
(2002).  



In frameworks in which a penalty function for the number of parameters modifies the 

value of the likelihood function to provide a number which can be used to select a model 

(as in Akaike’s, 1973, AIC or Schwartz’s, 1978, BIC) there is always the issue of which 

form such a function should take, especially given certain undesirable properties of such 

information criteria in systematically choosing over- or under-parameterized models in 

some circumstances.  

Model selection based on out-of-sample performance is also prone to problems and, in 

fact, after the pioneering work by Granger and Newbold in the early 1970s (Granger and 

Newbold, 1973), only in recent years has it become standard practice to adopt testing 

procedures for predictive ability whereby some measure of performance (such as the 

Mean Squared Prediction Error but, again, the choice of the criterion is not neutral) is 

used in a formal hypothesis testing framework (cf. Diebold and Mariano, 1995; West, 

1996; White, 2000; Giacomini and White, 2003). 

In this paper we present an approach based on earlier work by  White (1998), called 

the Relevant Transformation of the Inputs Network Approach (RETINA). It aims at 

achieving a flexible and parsimonious representation of the mean of a variable, 

conditional on a (potentially large) set of variables deemed of interest in situations where 

one does not have strong priors as to the form of the suitable function linking available 

information, or the relevance of individual variables. It has the flexibility of neural 

network models in that it accommodates nonlinearities and interaction effects (through 

nonlinear transformations of the potentially useful variables in the conditioning set), the 

concavity of the likelihood in the weights of the usual linear models (which avoids 

numerical complexity in estimation), and the ability to identify a set of attributes that are 

likely to be truly valuable for predicting outcomes (which corresponds to a principle of 

parsimony). In performing model selection, our approach relies on an estimation/cross-

validation scheme which is aimed at limiting the possibilities that good performance is 

due to sheer luck. Some simulation results show that it has good finite sample properties.  

We will start (Section II) by discussing flexibility, selective search and out-of-sample 

forecasting ability which are the important elements of model building and selection 

embedded into RETINA. The details of the RETINA algorithm are discussed in section 

III. We illustrate the characteristics and properties of the procedure in Section IV by 



means of some simulation experiments with different DGPs where we take into account 

linearity and nonlinearity, as well as some pecularities in the data (outliers, sparse data, 

structural break). We provide some insights about the rationale of some features of the 

algorithm by examining simpler versions of RETINA; further sets of results show  how 

RETINA performs relative to other automated procedures. In Section V  we sketch some 

evidence of the practical issues encountered when applying RETINA to real data. 

Concluding remarks follow.  

 

II. Some Ingredients for Model Building and Selection.  

 

A researcher typically selects a “preferred” parametric model of some aspect of the 

observed phenomenon, that is, a useful approximation to the data generating process 

(DGP, which may not even be within the class of candidate models), in that it provides a 

useful representation of the data characteristics. In general, for given available data (e.g., 

cross section, time series or panel) and aggregation level (e.g., individual, family, etc.) 

the choice of a model is influenced by its intended purpose, e.g., estimation of a 

conditional mean, hypothesis testing or out-of-sample forecasting. For example, at times 

economists use different models of consumption depending on whether they wish to 

estimate a given parameter, to choose among competing theories, or to obtain out-of-

sample forecasts.  

We will frame the usual problem of the description of the behavior of a dependent 

variable Y as one where, from a (potentially large) set of variables X of possible relevance 

for Y, we need to model the behavior of the conditional mean E(Y/X): the question is one 

of selecting which X’s are relevant and finding out how they exert their impact on Y 

(possibly non-linearly). RETINA´s recommended model aims at achieving a useful 

approximation to the unknown relationship (whatever coherence and rationale the 

researcher may find for the result), following three main principles: flexibility, selective 

search, and out-of-sample forecasting performance. The procedure should also 

accommodate forms of prior knowledge such as the addition or deletion of variables, the 

introduction of restrictions, or other theoretical or empirical considerations.  

 



Flexibility 

Given a lack of information on the form of the relationship linking X to Y (as is common 

in economics), in order to maintain a certain degree of flexibility one may use a set of  

transformations of the input variables, say ( )Xζ , which embody both nonlinearities and 

interactions. Thus, if for each observation i (i=1, …, n) we observe a value of the 

response variable Yi and we have available candidate predictor attributes Xih, h = 1,…, k, 

(where k is potentially a very large number), the set ( )Xζ can be made up of transformed 

variables Wij, j = 1,…,m, each of which is obtained as , , 1,0,1; , 1, ,ih ilX X h l kα β α β = − = K .3 

( )Xζ will include the original Xih´s, their squares, cross products, inverses and cross-

ratios (“level 1 transforms”, avoiding possible repetitions of outcomes and divisions by 

zero).  

Since the ultimate goal is to identify a parsimonious set of (transformed) attributes that 

are likely to be truly relevant for predicting out-of-sample outcomes for Y, we need to be 

careful that the transformations we choose are not highly correlated with one another, as 

highly correlated transforms will not provide a great deal of independent predictive 

information.   

Finally, a desirable property of the procedure should be concavity of the likelihood in 

the parameters (to avoid numerical complexity) and this can be achieved by allowing the 

effects of the ζ(X)’s on Y to be exerted in a linear fashion.  

The model we will be considering has the form:  

E(Y/X) ≈ ζ(X)’ β 

in the regression case or, more generally  

E(Y/X) ≈ F(ζ(X)’ β) 

where F is a suitable link function (e.g., the logistic cumulative distribution function for 

binary classification problems). We will rule out the appearance of further unknown 

parameters inside ζ  because that may result in non-concavity.  

 
 

                                                 
3 The number of transformed variables is therefore 2 5m k k= + . 



Selective Search 

The task of evaluating all the 2m possible models when we have m candidate regressors in 

the set of transformed variables ζ(X), and then of applying some form of model selection 

would quickly become impossible for an even moderate number of X variables. Rather, 

following the ideas in White (1998), we can think of selecting a number (of order 

proportional to m) of candidate models, inserting new explanatory variables on the basis 

of their relevance for the problem at hand: one possibility is to rank the candidate 

regressors according to their correlation in absolute value with the dependent variable. At 

the same time, in order to control for the degree of dependency of the new information 

added, we may want to keep the amount of collinearity among the regressors below a 

threshold parameter λ chosen by the experimenter (as λ approaches 0 new regressors 

approach orthogonality; as λ approaches 1 new regressors may be highly collinear).  

 

Out-of-Sample Forecasting Ability 

Although flexibility is desirable, in order to avoid the overparameterization suggested by 

a good in-sample fit for the model, we use disjoint sub-samples for estimation and cross-

validation, and an out-of-sample prediction performance criterion for model selection as 

important features of the procedure. The order in which sub-samples are used for 

estimation and/or cross-validation should not matter, and an extensive search of the 

model over different orderings of the sub-samples could be performed. 

 

III. The RETINA Procedure.  

 

The ingredients outlined in the previous section find their expression in the algorithm 

described in Table 1. This also contains further definitions of objects that we will refer to 

in what follows.  

 

TABLE 1 about here 

 

Some comments are needed to justify and/or clarify some features.  



• Division of the entire sample into three sub-samples. The choice of three (as 

opposed to a more customary two when cross-validation is adopted) as the 

number of sub-samples is mainly heuristic at this stage but is crucially motivated 

by the need to examine outcomes for different orders in which the samples are fed 

to the procedure, since we use the first one for estimation alone, the second one 

for cross-validation and re-estimation, and the third one just for cross-validation. 

We keep in mind Miller’s (1990) result that in sub-sample 1 parameters and 

standard deviations are biased away from zero, and therefore we estimate 

parameters again in the second sub-sample. It is therefore advisable to perform 

the cross-validation once more, with unused information included in the third sub-

sample. In view of this, splitting the sample in more than three sub-samples would 

seem to have diminishing returns. The sub-samples must be disjoint so that the 

information and the statistics we compute are (at least roughly) independent 

across samples, and should be as similar to one another as possible to limit the 

dangers of unaccounted for clusters of heterogeneity. With practical applications, 

the need for some sort of randomization of the way the observations are ordered 

may arise (cf. Section V).  

• Safeguards against spurious correlations. One legitimate concern is related to the 

possibility that a variable which does not enter the DGP may be erroneously 

selected in the set of the candidate regressors. This possibility is made more 

remote by three features of RETINA:  

i) one is the fact that the order suggested by estimation on the first sub-sample 

and cross-validation on the second sub-sample is scrambled by re-computing 

the correlations between the candidate set of regressors and Y on the second 

sub-sample before proceeding to the cross-validation on data from sub-sample 

3 (i.e., (1)W  will still be present but need not be the first variable to be included 

in the re-estimation on the second sub-sample).  

ii) The second is the use of λ as a threshold to control for the correlation among 

regressors: the decision that new variables should be added to the set on the 

basis of how much of their variability is accounted for by variables already 



included entails that what follows (1)W  in ( )Xλζ  need not be the same for 

different values of λ .  

iii) The third is that the repetition of the procedure on different orderings of the 

sub-samples (this would involve a total of six repetitions) may alter the 

composition of the candidate set of regressors altogether (i.e., (1)W  may not be 

the same variable for different orderings). 

• Information criteria. The criterion we adopt to select a candidate model has two-

steps: starting from the estimation on the first sub-sample we select the model 

which minimizes the mean square prediction error on the second sub-sample. But 

in order to select the final model associated with a specific ordering of the sub-

samples we then apply an information criterion, which adds to the mean square 

error a penalty term that depends on the number of  parameters of the model: here 

we use the out-of-sample AIC. The justification for this procedure is pragmatic, 

rather than theoretical: the results of Sin and White, 1996, do not carry over 

straightforwardly to this two-step - and then repeated for a different ordering –

approach. Nevertheless, without such a penalty we have found that the procedure 

tends to select somewhat larger models than would be ideal. Imposing the 

relatively modest AIC penalty usually takes the results in the right direction as 

seen in the simulation of Section IV. Precisely why this happens should be the 

object of a theoretical question for further research. 

• Comparison with some other methods in the literature: 

i) RETINA shares flexibility with Artificial Neural Networks (White, 1989), 

while maintaining linearity in the parameters within the link function which 

makes estimation easier; it uses out-of- sample predictive criteria, while ANN 

often use an in-sample goodness of fit criterion.  

ii) The “general-to-specific” (Gets) approach to model building and selection 

enjoys a long tradition in econometrics (an overview of the literature is 

forthcoming in Campos, Ericsson and Hendry, 2003). By framing it into the 

possibility of its being translated into an automated procedure, Hoover and 

Pérez (1999) can be credited with reviving the debate on the merits and 



properties of the procedure. This methodology starts with a sufficiently 

complicated model to describe economic phenomena, and by way of statistical 

hypothesis testing is able to reduce model complexity thereby  conveying the 

same information about the phenomenon of interest in a more parsimonious 

way. The preliminary results in the discussion by Hendry and Krolzig (1999) 

and their later work (still in progress: Krolzig and Hendry, 2001; Hendry and 

Krolzig, 2003a and 2003b) have uncovered much room for improving the 

procedure. Hypothesis testing as a model selection strategy is also used in 

stepwise regression (Miller, 1990) to which we will provide some 

comparisons below. RETINA expands the range of possible regressors 

through the transforms (a feature which could in principle be adopted by Gets 

as well) but relies on out-of-sample performance measures rather than residual 

diagnostics and hypothesis testing on coefficients. The use of sub-samples is 

also another point in common with Gets though for different reasons: in Gets 

the splitting is intended to check against the dangers of spurious correlations 

possibly detected in the overall sample; in RETINA it is a building block of 

the selective search.  

iii) An alternative model building and selection approach is the non-negative 

garrote (Breiman, 1995) aimed at selecting among the possible 

(untransformed) explanatory variables in a regression framework by zeroing 

and/or shrinking coefficient estimates and using cross-validation. Breiman 

(1995) himself acknowledges that the models selected by the non-negative 

garrote tend to be overparameterized, but the shrinkage provides accuracy.  

iv) Generalized linear models and generalized additive models (Hastie and 

Tibshirani, 1990) are linear in the parameters. Like our procedure, they can 

incorporate nonlinear link functions and may accommodate distributional 

assumptions about the error terms. They provide a general model building 

environment but are less amenable to automated model selection. 

The characteristics of RETINA thus outlined shield the procedure from the pejorative 

aspects of data mining (as discussed, among others, by Campos and Ericsson, 1999) in 

that the selective search makes no attempt at maximizing t-ratios and deals with data 



interdependence and over-parameterization. Moreover, starting from a large set of 

variables and enlarging this set through transforms reduce the danger of variable 

omission. As the procedure is automatic, it does not pay attention to whether estimates 

are sensible, say, from an economic point of view. This should not prevent the researcher 

from exercising expert knowledge, especially when several candidate models are 

available.  

 

IV. Simulations. 

 

Because attempts to obtain analytic results are overwhelmed by the intricacy of the 

approach, the major proving ground is how well the procedure works. Here we test the 

ability of RETINA to select a model corresponding to the DGP on simulated data. The 

goal of the simulations is twofold: to check the performance of RETINA and to compare 

its capabilities relative to other procedures. Aware as we are of Granger’s and 

Timmermann’s (1999) warning that the `true’ model is rarely even approximately known 

in practical situations, we would like it to be clear that in our simulations we have 

followed the common practice of adopting a metric based on a known DGP, in the spirit 

that at least the procedure should ‘behave well’ in such a case (cf. the reply by Hoover 

and Pérez, 1999). 

As far as the first goal is concerned, therefore, we design several data generating 

processes and vary several parameters, such as the overall sample size n, the amount of 

correlation ρ  among original variables X, and the variance σ  of the disturbance term so 

as to achieve a desired average R2 for the resulting estimated equations across 

replications. Apart from some simple linear and nonlinear DGPs, we also probe the 

sensitivity of the selective search performed by the algorithm by including some 

peculiarities in the data generation, such as discrete explanatory variables or explanatory 

variables with sparse data or outright noise in the form of  outliers or structural breaks in 

the DGP. The DGPs are detailed in Table 2.  

 

TABLE 2 about here 

 



To keep matters simple, RETINA was used with the level one transforms of the 

variables included in the DGP and of an additional irrelevant variable with the same 

distribution and correlation as 1 2 and i ix x . As a result, the maximum number of candidate 

regressors (the jW ’s) is 25 and the total number of possible candidate models to consider 

would be 224 = 16777216 (the constant is always included) versus the order 2x24=48 

evaluated by RETINA. We let the parameter λ vary from 0 to 1 by increments of 0.1. 

Recalling that the model selected by RETINA is the one which has the best out-of-sample 

forecasting performance relative to the DGP, for reporting purposes we will count a 

‘success’  when RETINA chooses a model which coincides with the DGP and trace the 

percentage of successes over 1000 replications of the experiments. Table 3 reports such 

percentages organized by overall sample size and average R2. A visual rendition of Table 

3 is given in Figure 1 where each panel reports the results for each DGP. 

 

TABLE 3 about here 

  

FIGURE 1 about here 

 

The results are strikingly similar in that the pattern which can be discerned is an 

increase of the percentage of success as the sample size, or the R2, increase across a wide 

variety of situations. A refinement of the grid for λ (the parameter that controls for 

collinearity among regressors) affects the success rate only marginally.4   

The simulations can also help us understand the benefits of some of the choices made 

in designing the algorithm. In particular, a useful comparison is relative to simpler 

versions of RETINA which apply either a split of  the overall sample into two rather than 

three sub-samples (White, 1998); or one in which there is no repetition of the procedure 

for a different ordering of the sub-samples (e.g., 3-2-1 instead of the initial 1-2-3, cf. 

Stage III.5 in Table 1), as well as one in which no penalty term for the number of 

parameters in the model is applied to the mean squared error computed on the third sub-

                                                 
4 In the n=100, R2=0.50 experiment with DGP1 the results were 72.9% with a 0.1 step versus 73.1% with a 
0.01 step at the price of a five-fold increase in the computation time.  



sample (cf. 4.b in Table 1). The results (the full details of which are not reported here, but 

are available upon request) show that  

• Concerning the split in two versus split in three sub-samples, the results show that 

there is a tendency for the former algorithm to overparameterize the selected 

model, and to stabilize the rates of success fairly far away from 100% when either 

the overall sample size or the R2 increase. This is true for all the DGPs tested in 

which this version of model selection is outperformed by RETINA; the only 

exception occurs in the linear DGP with n=100 and R2=0.25, possibly due to 

problems with estimation on a third of a small sample rather than on one half.  

• When the algorithm is based on the division into three sub-samples, the repetition 

of the procedure on a different ordering of the sub-samples provides some 

substantial gains in the successful retrieval of the DGP: for n=100 the gain is 

about 40% for low values of  R2, with a decrease in the gains as n and/or R2 

increase. As an example, one can see the results obtained for the DGP 1 reported 

in Figure 2 – panel A. 

• Finally, one can further simplify the algorithm by not repeating the procedure on a 

different ordering of the sub-samples and by adopting a different forecast 

performance criterion, namely using a simple minimum mean square error on the 

third sub-sample without adding any penalty term for the number of parameters in 

the candidate models. In such a case the procedure has a better performance in 

small samples but it tends to stabilize around rates of success of about 75% 

instead of about 98% for larger samples.  Again for a comparison, it is worth 

looking at Figure 2 – panel B. 

 

FIGURE 2 about here 

 

The second set of experiments is run by comparing RETINA’s performance with the 

results achievable by backward stepwise regression (Miller, 1990) and the non-negative 

garrote (Breiman, 1995) when both procedures are provided with the same level one 

transforms of the original variables. Table 4 shows that for the data of the linear DGP 

RETINA outperforms its rivals. The comparison is computationally demanding as the 



execution time for the non-negative garrote is more than two hundred times that of 

RETINA due to the complicated optimizations and the tenfold cross-validation used by 

this method5, and is certainly not exhaustive across DGPs. 

 

V. An Illustration with Empirical Data. 

 

A further major proving ground of RETINA’s usefulness lies in its application to 

empirical data and modeling of phenomena for which the functional form linking a 

dependent variable of interest with a set of available variables is not known a priori. 

While we will not develop an original application in this section, we will borrow some 

interesting preliminary results from Perez-Amaral and Marinucci (2002) demonstrating 

some of the technical difficulties that need to be taken into account when applying 

RETINA.  

The empirical question originates with the desire to model the demand for business 

telephone toll use by individual firms: as Taylor (1994) discusses, this is a field in which 

unaccounted heterogeneity can pose serious difficulties and in which the selection of 

really relevant variables becomes an empirical question. The dataset we have available6 is 

a cross-section (dating from 1997) of 13,766 individual businesses across 9 US states, 

comprising 32 variables related to consumption of telephone services. The phenomenon 

of interest is the total local bill, that is, the dollar amount for short distance calls paid by 

individual businesses. Among the possible explanatory variables, some are related to the 

number and type of telephone connections: the number of Business lines; the number of 

Hunting lines (a service that bundles all the telephone lines in the same location to be 

easily accessible with only a single number); the number of PBX connections (the 

connections between a firm's Private Branch exchange and the outside telephone 

networks) and the number of CENTREX lines (a sort of outsourcing of telephone 

services which avoids the need to purchase equipment at high risk of obsolescence). 

Others are related to the size and organization of the firm: the Total number of 

employees in the firm; the number of employees working locally (Here); Sqft (the 

                                                 
5 We have also limited the maximum value of the garrote parameter to 6 or 4 for faster convergence and 
speed of execution.  



surface occupied by the business activities), Population (the size of the area served by the 

business), and Sales (the sales by the firm). For brevity’s sake, let it suffice to say that 

many unreported data in the form of zeros are present, especially in the square footage 

and sales. After cleaning the data (assuming that errors in reporting are not systematically 

linked with the dependent variable) the effective sample was reduced to 4,476 

observations: to reduce heterogeneity a transformation of the total bill into total bill per 

local employee was adopted: over the whole sample a linear model had a very low R2 

(equal to 0.041) while the model provided by RETINA gave an R2 equal to 0.635. 

Moreover, a random shuffling of the original firms to avoid possible clusters of 

heterogeneity across sub-samples brought about an improvement to an R2 of 0.831. The 

out-of-sample performance computed as the root mean square error on a sub-sample not 

used for estimation shows that RETINA outperforms the linear model by 2.3 times. The 

selected model includes a constant and the following transformations (all of which are 

individually statistically significant): Business/Total; Hunting/Total; Business/Here; 

Hunting/Here; PBX/Here; CENTREX/Here; Sqfoot/Here; 1/(Here*Sales); 1/( Here*Pop). 

Far from claiming that the demand for telephone business toll use is correctly specified, 

what we retain from the exercise is that the results show the usefulness of transformations 

identified by RETINA beyond what may be suggested by common practice in 

econometrics (in the case at hand, for example, expressing the original variables as ratios 

to local employees). 

 

VI. Conclusions. 

 

In this paper we have developed a new method which may prove to be a useful tool for 

model building and selection when applied to empirical datasets. It can be used also as a 

data exploratory tool to suggest possible modeling choices and transformations of the 

explanatory variables to researchers who may want to exercise their own expert 

judgement in the final choice.  

                                                                                                                                                 
6 The data were provided by PNR, a subsidiary of Indetec International, now TNS Telecoms. 



While they do not cover all possibilities, our simulations have delivered a fairly 

reassuring picture of the performance of RETINA in recovering simple DGPs, especially 

with regard to the increase toward 1 of the success ratio as n increases.  

More simulations are certainly needed, to cover additional relevant cases, and 

especially to reproduce more and more realistic datasets. The unceasing increase of the 

computing power makes this task look less daunting than in the past. 

Several features of RETINA are still in need of investigation: how other choices of 

forecast performance measure inserted at the various suitable stages affect the results 

presented here; the treatment of dependent processes (including the important case of 

nonstationary variables) in a time-series context and of heterogeneity in a cross-section 

context; or the use of likelihood-based estimation procedures in lieu of regression, when 

the model to be selected belongs to the class of limited dependent variables models, for 

example, or when the error distribution assumptions are different from normality.   

The most promising comparison left aside here is between PcGets and RETINA. This 

is in part due to the fact that both procedures are still being developed and in part due to 

the fact that the software needed to run a fair competition between the two is highly 

demanding: a full-fledged comparison should be the object of a separate study, to 

investigate how the different logics of multi-path search and of flexibility express 

themselves in each methodology, compared side by side. 

 

References. 

 

Akaike, H. (1973). ‘Information theory and an extension of the likelihood principle’, in 

B.N. Petrov and F. Csaki (eds.), Proceedings of the Second International 

Symposium on Information Theory. Budapest: Akademiai Kiado, 267-281.  

Breiman, L. (1995). ‘Better subset regression using the nonnegative garrote’, 

Technometrics, Vol. 37, 373-84. 

Burnham, K. and Anderson, D. (2002). Model Selection and Inference: A Practical 

Information-Theoretic Approach, 2nd ed., Springer-Verlag, New York. 

Campos J. and Ericsson, N.R. (1999). ‘Constructive data mining: modeling consumers’ 

expenditure in Venezuela’, Econometrics Journal, Vol. 2, 226-40. 



Campos J., Ericsson, N.R., and D.F. Hendry (2003). Readings in General-to-Specific 

Modeling, Edward Elgar, Cheltenham, forthcoming.   

Diebold, F.X. and Mariano, R.S. (1995), Comparing predictive accuracy, Journal of 

Business and Economic Statistics, Vol. 13, 253-63. 

Giacomini, R. and White, H. (2003), ‘Tests of conditional predictive ability’, UCSD 

Dept. of Economics, Working Paper 2003-09. 

Granger, C.W.J., King, M. and White, H. (1995). ‘Comments on testing economic 

theories and the use of model selection criteria’, Journal of Econometrics, Vol. 

67, 173-87. 

Granger, C.W.J. and Newbold P. (1973). ‘Evaluation of forecasts’, Applied Economics, 

Vol. 5, 35-47.  

Granger, C.W.J. and Timmermann, A. (1999). ‘Data mining with local model 

specification uncertainty: a discussion of Hoover and Perez’, Econometrics 

Journal, Vol. 2, 220-25.  

Hastie, T. J. and Tibshirani, R. J.  (1990). Generalized Additive Models, Monographs on 

Statistics and Applied Probability 43, Chapman and Hall, London. 

Hendry, D.F. and Krolzig, H.-M. (1999). ‘Improving on ‘Data mining reconsidered’ by 

K.D. Hoover and S.J. Perez’,  Econometrics Journal, Vol. 2, 202-19.  

Hendry, D.F. and Krolzig, H.-M. (2003a). ‘New developments in automatic general-to-

specific modeling’, forthcoming in B.P. Stigum (ed.), Econometrics and the 

Philosophy of Economics, Princeton University Press, Princeton. 

Hendry, D.F. and Krolzig, H.-M. (2003b). ‘Sub-sample model selection procedures in 

Gets modelling’, forthcoming in R. Becker and S. Hurn (eds.), Advances in 

Economics and Econometrics: Theory and Applications, Edward Elgar, 

Cheltenham. 

Hoover, K.D. and Perez, S.J. (1999). ‘Data mining reconsidered: encompassing and the 

general-to-specific approach to specification search’, Econometrics Journal, Vol. 

2, 167-91.  

Inoue, A. and Kilian, L. (2003). ‘On the selection of forecasting models’, WP 214, 

European Central Bank.  



Krolzig, H.-M. and D.F. Hendry (2001). ‘Computer automation of general-to-specific 

model selection procedures’, Journal of Economic Dynamics and Control, 25, 

831-66. 

Miller, A. J. (1990). Subset Selection in Regression, Monographs on Statistics and 

Applied Probability 40, Chapman and Hall, London.  

Pérez-Amaral, T. and Marinucci, M. (2002), ‘Econometric modeling of business 

telephone toll demand for individual firms using a new model selection approach, 

RETINA’, presented at the 13th Regional Conference of the International 

Telecommunications Society, Madrid. 

Schwartz, G. (1978). ‘Estimating the dimension of a model’, Annals of Statistics, Vol. 6, 

461-64. 

Sin, C.-Y. and White, H. (1996), ‘Information criteria for selecting possibly misspecified 

parametric models’, Journal of Econometrics, Vol. 71, 207-25.  

Taylor, L. D. (1994). Telecommunications Demand Modelling: Theory and Applications, 

Dordrecht, Kluwer. 

White, H., (1989). ‘Learning in artificial neural networks: a statistical perspective’, 

Neural Computation, Vol. 1, 425-64, (reprinted in White, H. (1992). Artificial 

Neural Networks: Approximation and Learning Theory Oxford, Blackwell). 

White, H. (1998). ‘Artificial neural network and alternative methods for assessing naval 

readiness’. Technical Report, NRDA, San Diego. 

White, H. (2000). ‘A reality check for data snooping’, Econometrica, 68, 1097-1126. 

West, K. D. (1996). ‘Asymptotic inference about predictive ability’, Econometrica, 64, 

1067–84. 



TABLE 1 

The RETINA algorithm† 
Stage 0 - Preliminaries 

1. Data building and sorting 
a. Generate the set of transformed variables 1( ) { , , }mX W Wζ = K . 
b. Divide the sample into three sub-samples.  

Stage I - Isolating a “candidate” model 
2. Using Data on the First Sub-sample 

a. Order the variables in ζ(X) according to their (absolute) sample correlation 
with the dependent variable in the first sub-sample alone. Let (1)W  be the 
variable with the largest absolute correlation with Y, (2)W  be the second 
most correlated, and so on. 

b. Consider various sets of regressors all of which include a constant and 
(1)W : each set of regressors ( )Xλζ  is indexed by a “collinearity 

threshold” 0 1λ≤ ≤  and is built by including ( )jW  (j=2,…,m) in ( )Xλζ  if 

the 2R  of the regression of ( )jW  on the variables already included is λ≤ . 
c. The number of sets of regressors is controlled by the number of values of 

λ  between 0 and 1 chosen, say, ν . 
3. Using Data both on the First and Second Sub-sample  

a. Estimate each model by regressing Y on each set of regressors ( )Xλζ  
using the data on the first sub-sample only and compute an out-of-sample 
prediction criterion (the cross-validated mean squared prediction error) 
using the data on the second sub-sample only. This involves the estimation 
of ν  models. 

b. Select a “candidate” model as the one corresponding to the best out-of-
sample performance ( )* X

λ
ζ . 

Stage II – Search Strategy 
4. Using Data both on the Second and Third Sub-sample 

a. Search for a more parsimonious model: estimate all models including a 
constant and all the regressors in ( )* X

λ
ζ  one at a time in the order they 

were originally included, but also in the order produced by the procedure 
sub 2.a, this time on the basis of the correlations in the second sub-sample. 

b. Perform an evaluation of the models out-of-sample (using the data on the 
third sub-sample) calculating a performance measure (the cross-validated 
mean squared prediction error, possibly augmented by a penalty term for 
the number of parameters in the model). 

Stage III – Model Selection  
5. Repeat Stage I and II Changing the Order of the Sub-samples; Produce a 

Candidate for Each Sub-sample Ordering 
6. Select the Model which has the Best Performance over the Whole Sample  
† GAUSS Code for running RETINA is available upon request. 

 



TABLE 2 
The Data Generating Processes in the simulation experiments† 

DGP 1: linear 
 0 1 1 2 2 1, ,i i i iy x x u i nα α α σ= + + + = K  
where 0 1 2 1α α α= = = , 1ix  and 1ix  are jointly normal with correlation ρ between 

regressors equal to either 0.5 or 0.9. The error term iu  is i.i.d. N(0,1), σ  is calibrated to 

achieve an average R2 of the resulting estimated equations across replications equal to 

0.25, 0.50 and 0.75, respectively. 

DGP  2: ratio 
1

0 1
2

1, ,i
i i

i

xy u i n
x

α α σ= + + = K  

everything else is as in DGP1 except that ρ= 0.5 only.  

DGP  3: product 
0 1 1 2 1, ,i i i iy x x u i nα α σ= + + = K  

and everything else is as in DGP1. 

DGP 4: linear with binary regressor 
 0 1 1 3 3 1, ,i i i iy x x u i nα α α σ= + + + = K  
with 3 1α = , and 3ix  is a discrete explanatory variable which takes the value 1 with 

probability 0.5 and 0 otherwise, and everything else is as in DGP1. 

DGP 5: linear with sparse regressor 
 0 1 1 4 4 1, ,i i i iy x x u i nα α α σ= + + + = K  
with 4 1α = , and 4ix  is i.i.d. N(0,1) and a correlation ρ= 0.5 with 1ix  with probability 0.2 

and zero otherwise, and everything else is as in DGP1.    

DGP 6: linear with outliers 
 0 1 1 2 2 1, ,i i i iy x x v i nα α α σ= + + + = K  
where everything is as in DGP1 except that we expect 5% outliers in the error term iv  

which is equal to iu  when its absolute value is less than 1.96, and it is equal to iu  

multiplied by 5 otherwise. 

DGP 7: linear with structural break 
 * *

0 1 1 2 2 1, ,i i i iy x x u i nα α α σ= + + + = K  
with * *

1 2 1α α= =  for 1, , / 2i n= K  and * *
1 20.5, 1α α= =  otherwise. 

 



TABLE 3 
Percentages of successful retrieval of the DGPs  by RETINA  

for different DGPs†, sample sizes, and R2’s 
 

DGP Sample size R2=0.25 R2=0.5 R2=0.75 
1: linear 

100 22.8 72.9 97.7 
200 42.8 93.9 98.3 

1000 98.6 99.1 99.1 
2: ratio 

100 39.9 72.6 93.7 
200 49.8 82.2 97.4 

1000 73.6 94.7 99.1 
3: product 

100 75.9 96.2 98.6 
200 94.2 99.1 99.1 

1000 99.5 99.4 99.2 
4: linear with binary regressor 

100 9.8 43.4 88.1 
200 24.6 72.6 95.5 

1000 89.5 95.7 95.9 
5: linear with sparse regressor‡ 

100 NA NA NA 
200 6.8 32.8 66.8 

1000 62.6 92.6 97.1 
6: linear with 5% outliers 

100 19.5 64.9 95.4 
200 47.5 93.2 98.7 

1000 98.6 98.9 98.9 
7: linear with structural break 

100 9.6 38.9 85.9 
200 20.3 67.5 97.7 

1000 92.5 98.5 98.7 
† The correlation among the original variables X is 0.5ρ= . 
‡ For this DGP, and n=100 we ran into the problem of zero regressors in sub-samples.  



 

TABLE 4. 

Percentages of successes of RETINA versus other procedures for DGP1 and R2=0.5 

 
Procedure Sample size R2=0.25 R2=0.50 R2=0.75 
RETINA    

100 22.8 72.9 97.7 
200 42.8 93.9 98.3 

1000 98.6 99.1 99.1 
Stepwise   
 100 8.5 9.0 9.0 
 200 8.2 8.2 8.2 
 1000 8.7 8.7 8.7 
Non-negative Garrote   
 100 3.8 5.0 21.3 
 200 10.1 11.3 32.4 
 1000 34.2 54.3 73.4 

 



Figure 1: Percentages of successful retrieval of the DGPs by RETINA  
for different DGPs, sample sizes, and R2’s 
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Figure 2: Performance comparison between versions of RETINA: Data from DGP1  
Panel (A) without the repetition of the procedure on different sub-sample reordering 

Panel (B) same as (A) and without the penalty term in the forecast performance criterion 
index 
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