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Abstract

This paper asserts that the endowments of production factors cause cross-country
differences in GDP per capita by generating disparities in the sectoral composition.
For that purpose, we characterize the dynamic equilibrium of a two-sector endoge-
nous growth model with many consumption goods that are subject to minimum
consumption requirements. In this model, economies with the same fundamen-
tals but different endowments of capitals will end up growing at a common rate,
although the long run level and sectoral composition of GDP will be different. Be-
cause the total factor productivity depends on sectoral structure, these differences
in capital endowments will also generate sustained differences in the total factor
productivities. Moreover, in our model the slope of the policy functions depends
on the initial values of the capital stocks, which implies that the total factor pro-
ductivities of economies with the same economic fundamentals may diverge along
the transition.
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1. Introduction

New growth theory has provided increasing evidence suggesting that the accumulation
of production factors alone cannot explain the observed cross-country differences in
GDP per capita (see, for instance, McGrattan and Schmitz, 1999; and Parente and
Prescott, 2004). Authors like Klenow and Rodriguez-Clare (1997) and Hall and Jones
(1999) argue that differences in GDP per capita are mainly explained by differences
in total factor productivity (TFP, henceforth). Simultaneously, another branch of
development literature explains international differences in the growth rates of GDP
as the result of differences in the sectoral composition of GDP (see Echevarria, 1997;
and Laitner, 2000). Recently, Caselli (2005), Cordoba and Ripoll (2004), and Chanda
and Dalgaard (2005) unify these two lines of research by showing that changes in the
sectoral composition contribute not only to output growth, but also to productivity
growth without any true technological change. By using multisector growth models as
the basis of growth accounting exercises, these works demonstrate that the aggregate
level of TFP can be decomposed into a contribution from sectoral composition and a
contribution from the level of technology. Since the empirical evidence shows that
there exist meaningful differences in the sectoral composition across countries, the
composition effect can then explain a large part of the differences in aggregate TFP
levels across countries.

In order to account for the causes of the cross-country variation in output per capita,
we then need theories that help us to explain the sustained differences in the sectoral
composition of output across countries. Recent literature offers some explanations
based on supply-side factors like differences in the aggregate productivity across sectors
and the existence of barriers to allocate inputs to high productivity sectors.1 In this
paper, we however offer a complementary explanation based on the same demand-side
arguments used by literature to explain the structural change along the process of
development.2 By using a growth model with non-homothetic preferences, we show
that the stationary sectoral composition depends on the endowments of production
factors. This result is in stark contrast with those derived from the neoclassical
(either exogenous or endogenous) growth models, which predict convergence on sectoral
composition across countries with the same fundamentals even when they start with
different endowments. However, we will show that these countries can converge to
different sectoral compositions when the non-homotheticity of preferences makes the
sectoral composition of consumption and the sectoral allocation of production factors
depend on the income level even in the long-run. As TFP depends on the sectoral
composition, we will then conclude that the contribution of production factors to
explain GDP is larger when TFP is endogenous.3

1Caselli (2005) documents the main points of these theories. Cordoba and Ripoll (2004) also deal
with this issue.

2See, for instance, Echevarria (1997), Laitner (2000), Kongsamunt et al. (2001) or Foellmi and
Zweimuller (2004).

3Cordoba and Ripoll (2005) also stress that the results of development accounting may be modified
when TFP is assumed to be endogenous and to depend on capital stocks. However, in their model,
TFP is endogenous because they impose a particular accumulation law of TFP that depends on capital.
In contrast, in our model, TFP is endogenous because it depends on the sectoral composition of GDP
that is determined by capital endowments.
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We obtain our results from a baseline model of two consumption goods and two
capital goods based on the following fact: economies experiment meaningful changes in
the structure of the production activity along the process of economic development. On
the one hand, empirical evidence has shown that there is a relationship between the level
and the sectoral composition of GDP. Baumol and Wolf (1989), Chenery and Syrquin
(1975) and Kuznets (1971), among others, show that the process of development is
related to the process of structural change. On the other hand, as Chari et al. (1997)
point out, “the recent literature emphasizes that a broad measure of capital is needed
to account for at least some of the regularities in the data.” In particular, the process of
development is related to the growth of human capital, which explains the existence of
a strong accumulation of human capital along the development process. Galor (2005)
and Galor and Moav (2004) have shown the link between human capital accumulation
and GDP growth. Therefore, according to the data, the process of development is
linked to structural change and to the accumulation of human capital. In this paper
we consider a growth model that takes into account the dynamic relationship between
human capital accumulation and structural change along the transition adjustment and,
moreover, it is also consistent with the Kaldor facts regarding the long-run regularities
in economic growth. More specifically, we consider an endogenous growth model to
take into account the possible growth effects of sectoral composition.

We extend the two-sector model of endogenous growth with constant returns to
scale and with physical and human capital accumulation, that was introduced by
Uzawa (1965) and Lucas (1988). Apart from the absence of external effects, the
main departure from Lucas (1988) is in the modeling of preferences. On the one
hand, consumers derive utility from the consumption of two heterogeneous goods.
One of these consumption goods is perfect substitute of physical capital investments,
whereas other is perfect substitute of human capital investments. This means that
each sector produces a commodity that can be devoted either to consumption or
to increase one of the capital stocks. On the other hand, we introduce a minimum
consumption requirement based on an international demonstration effect: individuals
in emerging economies use the consumption level of the most advanced economies as
a reference with respect which their own consumption is compared to.4 Thus, this
minimum consumption does not vanish as the economy grows, which means that the
utility function is asymptotically non homothetic. This explains the dependence of the
long-run sectoral composition on the initial endowments of capitals. Therefore, we do
not interpret the consumption requirement as a minimum subsistence level but as an
aspiration in consumption because utility rises only when consumption grows faster
than its minimum requirement.

These key assumptions on preferences yields important changes in the growth
patterns predicted by the standard two-sector growth model.5 As in the standard
model (see, for instance, Caballé and Santos, 1993), there is a continuum of BGPs and,

4The idea of the international demonstration effect was developed by Nurkse (1953). He extended
Dusenberry’s (1949) notion of demonstration effect to explain the low propensity to save of the poorest
economies during the first decades of the twentieth century. The aforementioned author asserted that
the emerging economies imitate the consumption patterns of the developed economies.

5By standard growth model we will mean a growth model with a unique consumption good and
without any minimum consumption requirement.
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moreover, the initial conditions on the two capital stocks determine the BGP to which
the economy converges. However, in contrast with the standard two-sector growth
model, the BGPs differ in their ratios of physical to human capital and in their sectoral
compositions when the following conditions hold: (i) individuals derive utility from the
consumption of the two heterogenous goods; (ii) consumption is subject to a minimum
consumption requirement; and (iii) the technologies used by the two sectors exhibit
different capital intensities. Thus, our model predicts that economies with the same
fundamentals but different endowments of human and physical capital will converge to
a common level of the relative price and to the same growth rate, although the long-run
ratio of physical to human capital, the GDP to capital ratio and the sectoral structure
will be different.

An important economic implication of these results is that, according to our
theory, economies with different endowments will converge to different sectoral capital
allocations and different sectoral compositions of consumption and GDP. The non-
convergence to a common long-run sectoral composition has interesting consequences
for the conclusions derived from the exercises of development accounting. In fact, as
was mentioned before, TFP in a multisector growth model depends on the sectoral
structure, which in our model is endogenous and depends on capital endowments. Our
results then imply that the levels of physical and human capital are a source of sustained
differences in TFPs across economies. Thus, we assert that, because of the minimum
consumption requirement, capital accumulation also affects the level of GDP by means
of the induced changes in the sectoral composition and TFP. We can then conclude
that the minimum consumption requirement, such as it is defined in this paper, forces
a particular sectoral composition that limits the value of the aggregate production that
can be attained given the capital stocks.

Therefore, according to our model, the empirical studies of development accounting,
by assuming an exogenous TFP, obtain biased measures of the contribution of capital
endowments to explain the observed cross-country differences in GDP. In this paper,
we show numerically the contribution of capital accumulation to explain differences
in the values of TFP both at the BGP and along the transition. We show that this
contribution of capital may be larger when economies are assumed to be out of the BGP
because the process of structural change occurs along the transition. In particular, we
show that two economies with different initial levels of physical and human capital
exhibit significatively different sectoral structures along the transition when there is
a negative relationship between the accumulation of the two capital stocks along the
equilibrium path. In this case, the contribution of capital endowments to explain
differences in GDP across economies is larger along the transition than at the BGP.
From this analysis, we conclude that the nature of the development process depends
on the slope of the policy functions driving the accumulation of the capital stocks. In
particular, by limiting the analysis to the plausible case where the sector producing
the good subject to the minimum consumption requirement is relatively more intensive
in physical capital, we obtain that the value and even the sign of the slope of these
policy functions depends on the initial levels of physical and human capital, which is in
stark contrast with the standard two-sector model of endogenous growth (see Caballé
and Santos, 1993). This means that the sectoral structure, and then the TFP, of two
economies with the same fundamentals but different initial conditions on the capital
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stocks may even diverge along the transition.
The plan of the paper is as follows. Section 2 presents the model. Section 3

characterizes the steady-state equilibrium. In Section 4, we study the contribution of
capital stocks to explain differences in GDP per capita across countries by means of
their effects on sectoral composition. Section 5 characterizes the transition towards
the BGP and its implications for development accounting. Section 6 concludes the
paper and presents some possible extensions to the present research. All the proofs
and lengthy computations are in the Appendix.

2. The economy

Let us consider a two-sector growth model in which there are two types of capital k
and h, that we denote physical and human capital, respectively. One sector produces a
commodity Y according to the technology Y = A (sk)α (uh)1−α = AuhzαY , where s and
u are the shares of physical and human capital allocated to this sector, respectively, and
zY =

sk
uh is the capital ratio in this sector. The commodity Y can be either consumed

or added to the stock of physical capital. The law of motion of the physical capital
stock is thus given by

k̇ = A (sk)α (uh)1−α − c− δk, (2.1)

where c is the amount of Y devoted to consumption, and δ ∈ (0, 1) is the depreciation
rate of the physical capital stock. The other sector produces a commodity H

by means of the production function H = γ [(1− s)k]β [(1− u)h]1−β = γ(1− u)hzβH ,

where zH = (1−s)k
(1−u)h . This commodity can also be devoted either to consumption or to

increase the stock of human capital. The evolution of the human capital stock is thus
given by

ḣ = γ [(1− s)k]β [(1− u)h]1−β − x− ηh, (2.2)

where x denotes the amount of H devoted to consumption, and η ∈ (0, 1) is the
depreciation rate of the human capital stock. Because the two sectors produce final
goods, we define the GDP as follows:

Q = Y + pH, (2.3)

where p is the relative price of good H in terms of good Y.
The economy is populated by an infinitely lived representative agent characterized

by the following utility function:

U(c, x) =

[
(c− c)θ x1−θ

]1−σ

1− σ
,

where θ ∈ [0, 1] is the share parameter for good c in the composite consumption good,
σ > 0 is the constant elasticity of marginal utility with respect to this composite
consumption good, and c is a minimum consumption requirement. Observe that
preferences exhibit two important features. On the one hand, we consider asymmetric
consumption requirements across goods. In particular, we normalize the minimum
consumption requirement on good x to zero, which implies that the income elasticity

5



of demand is less than one for good c, and greater than one for good x. On the
other hand, consumers in our economy try to reach the standard of living of the most
developed economy, so that this consumption requirement is a fraction of the current
consumption level of this reference economy. We also assume that the richest economy
is in a BGP from the initial period.6 This implies that the minimum consumption
grows at a constant rate, i.e.

c = c0e
g∗t, (2.4)

where c0 is a fraction of the consumption level of the reference economy in the initial
period, and g∗ is the stationary growth rate of consumption reached by this reference
economy. Observe that, given a constant value of x, the utility rises when the growth
rate of consumption c is larger than g∗. We can then interpret this increasing path of
consumption requirements as a subjective aspiration because the utility rises only when
consumption grows faster than the minimum consumption requirement. As is usual, we
will consider no differences in the fundamentals across economies, which ensures that
our economy will converge to a BGP along which consumption will also grow at the
rate g∗. Finally, note that the introduction of the minimum consumption using this
additive functional form implies that the constraint c > c must hold for all t.

The representative agent maximizes the discounted sum of utilities

∫
∞

0
e−ρtU(c, x)dt,

subject to (2.1) and (2.2), where ρ > 0 is the discount rate. Let µ1 and µ2 be the
shadow prices of k and h, respectively. Appendix A provides the first order conditions
of this maximization problem, and derives the system of dynamic equations that fully
characterizes the equilibrium paths by following the standard procedure used in the
two-sector models of endogenous growth (see, for example, Bond et al., 1996). In the
remainder of this section, we only provide the equations that define the equilibrium
dynamics. First, since by definition p = µ2

µ1
, we get the equation that drives the growth

of the relative price

ṗ

p
= − (1− β)γzβH + βγz

β−1
H p+ η − δ, (2.5)

with

zH = φ

[
β (1− α)

α (1− β)

]
p

1

α−β , (2.6)

where

φ =
( γ
A

) 1

α−β

(
1− β

1− α

) 1−β
α−β

(
β

α

) β
α−β

.

As follows from (2.5), the growth of the price is driven by the standard non-arbitrage
condition that states that the returns on physical and human capital must coincide.
Note that (2.5) is a function of p alone and only depends on technology parameters. In

6 In order to match the model with reality, the richest economy could be identified as the US economy.
As is well known, this economy is along a BGP since the first years of the twentieth century.
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contrast, the value of the relative price is driven by the marginal rate of substitution,
i.e.,

p =

(
1− θ

θ

)(
c− c

x

)
, (2.7)

which shows that the relative price depends on the parameter θ and on the composition
of consumption.

We now proceed to characterize the growth rate of consumption expenditure. In
this economy with two consumption goods, we define consumption expenditure as
w = c+ px. Moreover, we denote the fraction of consumption expenditures devoted to
the purchase of good c by wc, where

wc =
1

1 +
(
1−θ
θ

) (
1− c

c

) , (2.8)

as follows from (2.7). Note that wc provides a measure of the composition of
consumption expenditures, which depends on θ and on the ratio c

c . It follows that
the composition of consumption changes along the development process because of
the introduction of the consumption aspiration. In fact, the aspiration makes the
utility function be non-homothetic, which implies that the composition of consumption
depends on the level of income. In Appendix A, we obtain that

ẇ

w
= g∗ +

(
w − c

σw

)[
βγpz

β−1
H − δ − ρ− σg∗ − (1− θ) (1− σ)

ṗ

p

]
. (2.9)

As follows from (2.9), the existence of two consumption goods implies that the
convergence is not only driven by the diminishing returns to scale but also by the
change in the relative price. Moreover, we also observe that the intertemporal elasticity
of substitution (IES, henceforth) is given by χ = w−c

σw
. Given that the growth rate of

the consumption aspiration is equal to the long-run growth rate of consumption c, the
IES is constant in the long run even for finite values of consumption. However, during
the transition, and unlike the case of homothetic preferences, the IES is not constant.

Finally, we characterize the growth rate of the two capital stocks. For that purpose,
we use (2.7) and the definition of w to rewrite the ratios c

k and
x
h as functions of p, w,

k and h. Given these functions, we get in Appendix A that

k̇

k
= A

(
uh

k

)
zαY − δ −

θw + (1− θ) c

k
, (2.10)

and
ḣ

h
= γ (1− u) zβH − η − (1− θ)

(
w − c

ph

)
, (2.11)

with
zY = φp

1

α−β , (2.12)

and

u =
z − zH

zY − zH
, (2.13)

where z denotes the aggregate ratio from physical to human capital, i.e., z = k
h
.
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We can now define the dynamic equilibrium as a set of paths {w, p, k, h, c} that,
given the initial levels of the two capital stocks k0 and h0 and of the initial aspiration
c0, solves the system of differential equations formed by (2.4), (2.5), (2.9), (2.10), and
(2.11), together with (2.6), (2.12), (2.13) and the usual transversality conditions

lim
t→∞

µ1k = 0, (2.14)

and
lim
t→∞

µ2h = 0. (2.15)

Note that the equilibrium will be characterized by three state variables, k, h and c, and
two control variables, w and p. Because there are three state variables, the transition
will be driven not only by the imbalances between the two capital stocks, as occurs
in the standard two-sector growth model, but also by the initial levels of the capital
stocks.

3. The balanced growth path

A steady-state equilibrium or BGP in our economy is an equilibrium path along which
both capital stocks, both consumption goods and consumption expenditures grow at
a constant rate, and capital allocation between sectors, relative prices and the ratio
from aggregate output to physical capital are constant. This section lays down the
properties of a BGP and the conditions for its existence.

Proposition 3.1. If p∗ is the relative price along a BGP, then p∗ is the unique solution
to

− (1− β) γzβH + βγz
β−1
H p∗ + η − δ = 0. (3.1)

Moreover, along a BGP the two capital stocks and consumption expenditure grow at
the same constant growth rate

g∗ =
βγz

β−1
H p∗ − δ − ρ

σ
. (3.2)

We have shown the existence and uniqueness of a long-run price level and growth
rate. Obviously, this does not imply the existence of a BGP, but it implies that if a BGP
exists then the price level and growth rates will be unique. Note that these long-run
values of the relative price and growth rate neither depend on the weight of consumption
goods in the utility function, θ, nor on the initial aspiration, c0. Thus, the assumptions
made on preferences do not affect the long-run value of these two variables that, as in
the standard two-sector growth model, only depends on technology. We show next that
the long-run level of the variables depends on the assumptions made on preferences.
For that purpose, we normalize the variables w, k, and h as follows

ŵ = we−g∗t, (3.3)

k̂ = ke−g∗t, (3.4)

and
ĥ = he−g∗t. (3.5)
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Note that the normalized variables ŵ, k̂ and ĥ will remain constant along a BGP,
and let ŵ∗, k̂∗, and ĥ∗ denote the respective steady-state values of these variables. The
following proposition characterizes a steady-state equilibrium in terms of the normalized
variables ŵ, k̂ and ĥ.

Proposition 3.2. Given k̂∗, a BGP is a set
{
g∗, p∗, ĥ∗, ŵ∗

}
that satisfies (1− σ) g∗ <

ρ and

k̂∗ ≥ kc =

(
c0

bf

){
b+

(
1− θ

θ

)[
AzHz

α
Y

p (zY − zH)

]}
,

and solves (3.1), (3.2), and

ĥ∗ = m+ nk̂∗, (3.6)

ŵ∗ = l + jk̂∗, (3.7)

where

m =

(
1− θ

θ

)(
c0

bp∗

)
,

n = −

(
1

b

){(
1− θ

θp∗

)[(
AzαY
zY−zH

)
− (δ + g∗)

]
+

γz
β
H

zY−zH

}
,

l = −

(
1

θ

)[
m

(
AzHz

α
Y

zY − zH

)
+ (1− θ) c0

]
,

j =

(
1

θ

)[
(1− nzH)

(
AzαY
zY−zH

)
− (δ + g∗)

]
,

and

b = (η + g∗)− zH

(
AzαY
zY−zH

)(
1− θ

θp∗

)
−
γz

β
HzY

zY−zH
.

Moreover, the following statements hold:
(i) the slopes n and j are positive;
(ii) if c0 > 0, θ ∈ (0, 1) and α �= β, then m > 0 when α < β, whereas m < 0 when

α > β. Otherwise, m = 0.

The previous result states the conditions on the fundamentals for the existence of
an interior BGP. On the one hand, the condition (1− σ) g∗ < ρ guarantees that the
transversality conditions hold and the objective function in the representative agent’s
problem takes a bounded value. On the other hand, the condition k̂∗ ≥ kc ensures that
the value of the physical capital stock at the BGP satisfies ĥ∗ > 0 and ĉ∗ > c0. From
now on, we will assume that these two conditions hold.

Proposition 3.2 also shows that the set of steady-state values of ŵ, k̂ and ĥ is a
linear manifold of dimension one. This means that there is a continuum of BGPs,
which we will index by k̂∗. Along this manifold there is a positive relationship between

ŵ∗ and k̂∗, and between ĥ∗ and k̂∗. However, the ratios ĥ∗

k̂∗
and ŵ∗

k̂∗
can either change or

remain constant from one BGP to another. To see this, note that the linear manifold of
BGPs does not emanate from the origin when the independent terms in (3.6) and (3.7)
are different from zero. This is an important difference with respect to the standard
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two-sector growth model, where the set of BGPs forms a linear manifold emanating
from the origin.7 This difference will yield the main results of the paper. The next
corollary provides conditions for this difference to hold.

Corollary 3.3. The manifold of BGPs does not emanate from the origin if and only
if the following statements hold:

(i) individuals derive utility from the consumption of the two goods, i.e. θ ∈ (0, 1);
(ii) the aspiration in consumption is strictly positive, i.e., c0 > 0; and
(iii) the capital intensity is different across sectors, i.e., α �= β.

The main implication of the previous result for the purpose of this paper is that the
sectoral composition can change along the set of BGPs, which is in stark contrast with
the standard two-sector model of endogenous growth. In order to show this conclusion,
we first proceed to characterize in some detail the relationship between the values of
ĥ∗ and k̂∗ derived from Proposition 3.2. Note that the value ĥ∗ depends positively
on k̂∗ because the function (3.6) has a positive slope. However, the stationary ratio
between both capital stocks, that we will denote by z∗, can increase, decrease or remain
constant after a positive shock in k̂∗. By using Proposition 3.2, we next characterize
this dependence of z∗ on k̂∗.

Proposition 3.4. Assume that c0 > 0 and θ ∈ (0, 1). If α > β the ratio z∗ is a
decreasing function of k̂∗, whereas z∗ is an increasing function of k̂∗ when α < β. The
ratio z∗ does not depend on k̂∗ if c0 = 0, θ = 1, or α = β.

From the previous result, we conclude that different BGPs can exhibit different
physical to human capital ratios, although these ratios will be constant in each BGP.
The consumption aspiration forces the economies to devote more resources to produce
the commodity Y when the normalized stock of capital k̂∗ at a BGP and, thus, GDP
are small. Hence, the ratio between the output of sector Y and the output of sector
X will be larger in those economies with a smaller value of k̂∗ and decrease as this
value rises. As a consequence of the composition of GDP derived from small values
of k̂∗, the required stock of physical capital in this case is larger (smaller) than the
required stock of human capital if sector Y is more (less) intensive in physical capital
than sector X, i.e. when α > (<)β. Therefore, if α > (<)β then the ratio z∗ is large
(small) in poor economies, where the aspiration in consumption forces agents to devote
most resources to produce the commodity Y . This explains the dependence of this
ratio z∗ on the normalized stock of physical capital k̂∗ established by Proposition 3.4.
Observe also that if α = β the factor intensity is the same in the two sectors and, thus,
the relative requirements of both capital stocks do not change as k̂∗ rises. This means
that the ratio z∗ is constant when α = β. Finally, if either θ = 1 (there is a unique
consumption good) or c0 = 0, a rise in the normalized stock of physical capital does
not change the composition of consumption and, thus, it does not change the capital
ratio z∗. Therefore, it follows that only when θ ∈ (0, 1), c0 > 0, and α �= β, the ratio
z∗ changes with the normalized stock of physical capital k̂∗.

We next characterize the dependence of the stationary values of u and wc on k̂∗.
For that purpose, we use the definition of u and wc and the results in Proposition 3.2.

7See Caballé and Santos (1993) for an analysis of the BGP in the standard two-sector growth model.
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Proposition 3.5. Let u∗ and w∗c be the steady-state values of u and wc, respectively.
(i) If c0 > 0, θ ∈ (0, 1) and α �= β, then u∗ is a decreasing function of k̂∗. Otherwise,

u∗ does not depend on k̂∗.

(ii) If c0 > 0 and θ ∈ (0, 1), then w∗c is a decreasing function of k̂∗. Otherwise, w∗c
does not depend on k̂∗.

The previous result implies that the composition of consumption and the sectoral
structure at the BGP also depend on the value of k̂∗. In particular, if the conditions in
Corollary 3.3 hold, then these two variables will change from one BGP to another. This
will be crucial to understand the mechanics that underlines the endogeneity of TFP in
our model. This result is a consequence of the introduction of a consumption aspiration
and of heterogenous consumption goods. However, the result does not depend on the
relative factor intensity ranking. The intuition is as follows. In economies with a low
normalized stock of physical capital at the BGP (poor economies), aspirations force
agents to devote a large amount of resources to produce commodity Y and to consume
good c. Thus, the aspirations in consumption leads both u∗ and w∗c to be large in these
economies and to be decreasing in k̂∗. Hence, the long-run sectoral composition of
consumption and GDP depends on the normalized stock of physical capital.

Observe that the long-run sectoral composition does not depend on the actual level
of capital k but on the normalized level of capital k̂∗. This implies that two economies
will exhibit a different sectoral composition of GDP for a given level of capital stock k
if they attain this level at different periods. The economy that reaches a given level of
capital stock later is farther away from the reference economy, so that a larger fraction
of GDP must be devoted to satisfy the larger minimum consumption requirement at
that moment. Therefore, in our model the level and the composition of GDP is not
directly determined by capital stocks, but by the relationship between these stocks and
the stock of aspirations.

At this point, it is convenient to analyze the stability of the set of BGPs in order
to show how the initial conditions determine the BGP. The standard duality between
Rybczynski and Stolper-Sumuelson effects determines the stability property.8 Thus,
this property neither depends on the factor intensity ranking nor on the assumptions
made on preferences.

Proposition 3.6. Every point in the manifold of BGPs is saddle path stable, which
means that there is a unique equilibrium path that converges to each BGP.

We conclude that two economies with the same fundamentals, but different initial
endowments of capital stocks and aspirations, will end up with the same relative prices
and growing at the same rate, although the physical to human capital ratio and the
sectoral composition remain being different. Therefore, this model predicts differences
across countries in the long-run sectoral composition. Note that this result is not present
in the standard two-sector growth model, in which the economies share the same long-
run sectoral composition. In this sense, the version of the two-sector growth model we
consider is a theory of both economic growth and sectoral composition because their
long-run values are endogenously determined.

8The role of the factor intensity ranking in the transitional dynamics of multi-sector growth models
is extensively presented in Bond, et al. (1996).
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Echevarria (1997), Rebelo (1991), Steger (2006), among many others, also consider
growth models with endogenous sectoral composition that changes as the economy
develops along its transitional path. However, in these papers the sectoral composition
is constant along the set of BGPs. Thus, although economies converge to different
BGPs, they exhibit the same long-run sectoral composition. By the contrary, in
our model the economies can converge into BGPs with different long-run sectoral
composition depending on the initial conditions. Once in a BGP, each economy grows
at a constant rate, and its sectoral composition remains constant. The dependence of
the long-run sectoral composition on capital stocks, and so on the initial conditions, is
a result that emerges from the fact that the minimum consumption requirement is an
aspiration that grows permanently. This increasing aspiration forces agents to devote
a permanently growing amount of resources to consume good Y, which sets a limit to
structural change.

The non-convergence to a common sectoral composition will generate cross-country
disparities in TFP without any difference in technology levels. In fact, the endogeneity
of sectoral composition makes TFP depend on capital stocks. To see this, we follow
Cordoba and Ripoll (2004) and we use (2.1), (2.2) and (2.3) to rewrite GDP as follows

Q = A
( s
u

)α
[
u (α− β) + 1− α

1− β

]

︸ ︷︷ ︸
TFP

kαh1−α. (3.8)

This decomposition of GDP between production factors and TFP shows that the later
depends on the sectoral allocations of capital stocks. Therefore, as in any multisector
growth model, the level of TFP depends on sectoral structure. However, while in the
standard two-sector growth model the long-run values of these capital shares are equal
across countries with the same fundamentals, in our model they do depend on the value
of the capital stock k̂∗. Therefore, in our version of the two-sector growth model, TFP
is endogenous in the sense that it depends on the capital stocks. In particular, in poor
economies the value of u is larger and the TFP will be lower than in richer economies.
Note that this result has interesting consequences on development accounting. In
particular, by taking TFP as exogenous, several authors have concluded that differences
in capital stocks cannot explain the observed disparities in the levels of GDP per capita
(see, for instance, Hall and Jones, 1999). According to our model, taking TFP as
exogenous introduces a bias in the results from the accounting analysis because the
differences in capital stocks also imply differences in TFP.9 In other words, our model
implies that the contribution of capital to explain GDP differences is underestimated
when TFP is assumed to be exogenous.

9Klenow and Rodriguez-Clare (1997), and Hall and Jones (1999) rewrite (3.8) as

Q = TFP
1

1−α

(
k
Q

) α

1−α

h . They use this transformation because they want to take into account that

the impact of the difference in technology between economies is larger than the one measured by TFP,
as it also affects the accumulation of capital. We do not have this problem since we do not consider
differences in technologies across economies. In contrast, we assume that economies exhibit different
TFP values only because they have different initial capital stocks. This means that, in this paper, in
order to capture the actual effect of differences in capital stocks we must take into account that TFP
is endogenous.
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4. Development accounting

We will now show both analytically and numerically that the differences in capital stocks
yield larger differences in GDP levels when TFP is endogenous. For that purpose, in
this section we will focus on the set of BGPs. Note that using (3.8) to explain GDP
differences requires a measure of human capital, which is a difficult variable to be
measured. To avoid this problem, we use the long-run relationship between physical
and human capital implied by (3.6) to rewrite the long-run value of GDP as a function
of the long-run value of the normalized stock of physical capital k̂∗. By combining (3.6)
and (3.8), and using Proposition 3.2, the following result characterizes the relationship
between the long-run values of GDP and of physical capital implied by the model.

Proposition 4.1. Let us define the normalized level of GDP as Q̂ = Qe−g∗t and its
steady-state value as Q̂∗. The value of Q̂∗ is the following linear function of the steady-
state value of k̂∗:

Q̂∗ = b̃+ ãk̂∗, (4.1)

where
b̃ = (1− α)mAzαY ,

and
ã = αAzα−1Y + (1− α)nAzαY .

Moreover, the following statements hold: (i) ã > 0; and (ii) if θ ∈ (0, 1) , c0 > 0, and
α > (<)β then b̃ < (>) 0, whereas b̃ = 0 otherwise.

As is usual, in our model the ratio from GDP to physical capital is constant at a
steady-state equilibrium. However, this ratio may change along the set of BGPs. In
fact, when either θ = 1 or c0 = 0, our version of the two-sector constant returns to
scale growth model coincides with the standard two-sector growth model. In this case,
the relation between the steady-state values of GDP and of physical capital stock is
the same for all BGPs under the assumption of constant returns to scale. This result
also arises when α = β because in this case there is a unique production technology, so
that the model coincides with a one sector constant returns to scale growth model.10

On the contrary, if θ ∈ (0, 1), c0 > 0 and α �= β, then the GDP to physical capital
ratio is not constant along the set of BGPs since b̃ is different from zero. In this case,
this ratio is increasing (decreasing) in the normalized stock of physical capital because
b̃ < (>) 0 when α > (<)β. This implies that economies with twice as much level of k̂∗

exhibit more (less) than twice as much level of Q̂∗ when α > (<)β. The intuition is
as follows. Aspirations in consumption make poor economies devote a relatively large
fraction of resources to sector Y . This implies that in these economies the physical to
human capital ratio is larger (smaller) when sector Y is more (less) intensive in physical
capital than sector X, i.e. when α > (<)β. Thus, if α > (<)β, then the ratio of GDP
to capital is initially large (small) in poor economies and this ratio decreases (increases)
as the economy develops.

We then observe that aspirations in consumption affect the sectoral structure of
GDP. In this sense, the minimum consumption requirement imposed by the aspirations

10Note that if α = β then TFP = A, so that the sectoral structure does not affect the level of TFP.
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can be interpreted as a limit to development. On the one hand, the mere presence of this
minimum requirement raises the ability of capital endowments to explain differences in
GDP per capita across countries. On the other hand, the disparities observed across
countries may also be partially explained by means of differences in their initial level
of aspirations. In fact, economies with the same fundamentals, except for the initial
level of aspirations, will diverge permanently in their GDP to physical capital ratio,
in the capital ratio and in the sectoral structure, even though these countries will
exhibit the same stationary growth rate and relative price level. Figure 1 shows how
the stationary ratio between GDP and physical capital and the stationary capital ratio
depend on the value of c0 when α > β. We observe that the aspirations in consumption
reduce the level of human capital stock and the level of GDP that can be attained with
a given stock of physical capital. This clearly shows that the consumption aspiration
deters development by means of modifying the sectoral composition. This barrier to
development is surpassed when capital stocks rise. More precisely, in order to maintain
the level of GDP unchanged after a positive shock in the consumption aspiration, it
is necessary an increase in capital stocks. In particular, when the production of the
restricted good Y is more intensive in physical capital (i.e., α > β), the stock of physical
capital must rise relatively more than human capital stock. On the contrary, the stock
of human capital must increase in a larger proportion than physical capital stock when
α < β in order to offset the shock in aspirations.11 This explains that, in the plausible
case α > β, a rise in the stock of physical capital has a larger effect on GDP in the
presence of consumption aspirations because in this case the rise in the capital stock
allows to modify the sectoral structure of GDP and, thus, to surpass the barrier to
development imposed by aspirations.

[Insert Figure 1]

We have shown that capital stocks in our model have an indirect effect on TFP
and GDP by changing the sectoral structure. In what follows, we use the output
decomposition in (3.8) to illustrate by means of numerical simulations how differences
in the steady-state level of the normalized stock of physical capital yield differences in
GDP. The stock of physical capital will affect GDP through three channels: (i) the direct
contribution as a production factor, that we denote by Ck; (ii) the indirect contribution
derived from the induced change in the human capital stock, that we denote by Ch; and
(iii) the indirect contribution derived from the induced change in TFP, that we denote
by CTFP . For our purpose, we consider two economies that only differ in their values
of k̂∗. The parameter values are chosen such that the economy with the larger stock
of physical capital (rich economy) replicates some facts of US economy. We first set
arbitrarily the values of k̂∗ and A equal to unity. We then proceed to choose the other
parameters as follows: we set α = 0.42 from Perli and Sakellaris (1998); we fix δ = 5.6%
to obtain that the annual investment in physical capital amounts to 7.6% of its stock
and, moreover, we assume that η = δ; the value of the preference parameter σ is equal

11When α < β, a rise in the stock of human capital allows to surpass the barrier to growth, whereas
a rise in the stock of physical capital has the opposite effect. The reason is that if α < β a rise in h (k)
results into a lower (higher) ratio z that reduces (increases) u. Thus, if α < β, a rise in h (k) increases
(decreases) TFP by means of reducing (raising) u.
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to 2, which implies that the IES would be 0.5 if there were no consumption aspirations;
the value of γ is such that the net interest rate equals to 5.2%; the value of ρ is such that
g∗ = 2%; the value of c0 is such that χ = 0.21; and θ is such that wc = 0.6. Finally, we
take alternative values for the technological parameter β to illustrate how differences
in the capital intensities across sectors alters the results from the accounting exercises.
In particular, we assume three different values: β = 0.32, β = 0.15 and β = 0. Once
the parameters have been calibrated, we fix the value of k̂∗ for the poor economy such
that the value of wc in this economy is equal to 0.95.

12

[Insert Table 1]

Table 1 shows the results from the proposed accounting exercise. As was mentioned,
in Table 1 the rich and poor economies exhibit the same fundamentals except for the
value of k̂∗. It follows that these economies have a common long-run growth rate,
interest rate and relative price. However, the levels of the other variables, including
the sectoral composition, are different. In fact, the differences in k̂∗ yield a sectoral
adjustment that is made in terms of both the sectoral composition of consumption
and the sectoral composition of GDP. The differences in the sectoral composition occur
because in the poor economy aspirations are stronger and, thus, affect at a larger extend
the composition of consumption. In Table 1, these stronger aspirations are shown in the
ratio c0

ĉ∗ , which is larger in the poor economy. Note that these stronger aspirations result
into a lower IES and a larger value of w∗c . This different composition of consumption
affects the sectoral structure, which is measured by u∗. The effect of these differences
in sectoral structures is measured by CTFP , which is clearly higher when β is smaller.
This means that the effect of sectoral structure is larger when the difference between
the technologies is larger, i.e., when the difference between α and β is larger. However,
as can be checked from Table 1, the large contribution of physical capital through the
TFP when α and β are very different is obtained at the cost of having an unreasonably
low labor share in sector Y. This implies that this contribution CTFP would be smaller
if the value of β is set such that u∗ takes empirically plausible values.

We also observe that while there is a strong difference between the poor and rich
economies in terms of w∗c , the difference in terms of u

∗ is small. This dissimilar response
of w∗c and u

∗ to the difference in the values of k̂∗ is explained as follows. A larger w∗c
implies that the ratio between the production of sectors Y and X must also be larger.
This can be satisfied either by rising the amount of human capital devoted to sector
Y or by reducing the consumption of the good produced in sector X in order to raise
the stock of human capital, which results into a higher production in sector Y. Note
that only the first effect implies changes in the sectoral structure that rises TFP (see
equation (3.8)). However, as follows from the previous numerical examples, it seems
that the second effect is more important than the first one because large differences in
w∗c translates into a large value of Ch and a small value of CTFP (it is particularly small
when we consider the case β = 0.32). These results are obtained under the assumption
that both economies are in their BGPs. In the following section, we will show that
if we instead assume that the poor economy is in its transition to the BGP, then the
contribution of physical capital through the TFP may be larger.

12Our definition of poor economy then includes those economies whose aspiration forces to allocate
a large amount of resources to consume good Y. This happens when the fraction wc is large.
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5. The dynamic equilibrium

In the previous sections we have proved that the sectoral composition and the TFP at
the BGP are determined by the initial conditions. In this section, we will show that
the sectoral composition of economies with the same fundamentals but different initial
conditions may diverge along the process of dynamic adjustment to the BGP . This
increases the capacity of the differences in capital endowments to explain disparities in
TFP across countries. Thus, in this section, we show that the contribution of capital
to TFP may be larger when we consider that economies are out of their BGPs.

For the purpose in this section, we first linearly approximate the policy functions
around the set of BGPs, and we limit our analysis to the plausible case with α > β. In
Appendix C, we characterize the linear approximation of the policy functions in this
case. From this approximation, we first observe that k̂∗, which we have used to index
the set of BGPs, is a function of the initial values of both capital stocks. This means
that, in contrast with the standard two-sector model of endogenous growth (i.e., as
c0 = 0 and θ = 1), it is not only the initial value of the physical to human capital
ratio, but also the levels of both capital stocks what determine the BGP to which the
economy converges when our assumptions on preferences hold (i.e., when θ ∈ (0, 1) and
c0 > 0). Therefore, we have proved that economies with different initial endowments of
capitals will converge to BGPs with different values of physical to human capital ratio
and of sectoral structure if θ ∈ (0, 1), c0 > 0 and α �= β, even though these economies
have a common initial capital ratio.

At this point, we must also note that the initial stock of aspirations, c0, also affects
the value of k̂∗. Thus, economies with different initial stocks of aspirations will converge
to long-run equilibria with different levels of GDP and different sectoral compositions
of consumption and GDP. Table 2 compares the BGPs of economies that are different
only in the initial value of the stock of aspirations. This example shows that a larger
c0 implies a smaller long-run value of GDP and affects the composition of consumption
and the sectoral structure. This shows up that the aspirations force individuals to
consume the good c, which forces a particular sectoral structure that limits the economic
development.

[Insert Table 2]

In what follows we use the linear approximation to the policy functions to compare,
by means of the numerical examples used in the previous section, two economies that are
only different in their initial stock of physical capital. We assume that the rich economy
(i.e. the economy with a higher stock of physical capital) is in its BGP, whereas the
poor economy is in the transition to the BGP. In particular, we assume that the value of
the normalized stock of physical capital in the poor economy is equal to the 90% of its
value at the BGP. Table 3 shows the results of this simulation exercise. As follows from
the comparison between tables 1 and 3, when we assume that both economies are in the
BGP, the differences in sectoral structure given by u∗ are small, whereas the differences
in the composition of consumption given by w∗c are large. In contrast, if we assume
that the poor economy is outside of the BGP, there are larger differences in terms of
u.13 Obviously, this means that the contribution of physical capital to the differences

13The dynamic adjustment in u is driven by the capital ratio z and the relative prices.
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in TFP is larger when we assume that the poor economy is outside of the BGP. The
endogeneity of TFP then rises meaningfully the ability of capital endowments to explain
GDP differences when the process of dynamic adjustment to the BGP is considered.

[Insert Table 3]

The difference between the results of Table 3 and those in Table 1 arises from
the fact that TFP depends on the sectoral structure and not on the composition of
consumption. Note that w∗c is a decreasing function of k̂

∗, as follows from Proposition
3.5, whereas u∗ is an increasing function of z∗ as follows from equation (2.13). Because
along the manifold of BGPs the relationship between the two capital stocks is positive,
the difference in k̂∗ between BGPs is larger than the differences in the values of z∗, as
it can be seen from Figure 2. This means that the difference between two economies at
the BGP is larger in terms of consumption composition than in terms of the sectoral
structure. This explains the numerical results obtained in Table 1, that show a large
difference in w∗c between the two economies and a small difference in u

∗. In contrast, as
shown in Figure 2, along the transition the capital ratio experiments a larger variation
than the normalized stock of physical capital if the policy function relating the two
capital stocks is downward sloping. It then follows that in this case economies adjust
their sectoral structures along the transition in a larger extend than their consumption
compositions. This explains the results in Tables 1 and 3, where the differences in TFP
across economies with different endowments of capitals are larger along the transition
than at the BGP.

[Insert Figure 2]

As we have mentioned, the results in Table 3 depend crucially on the negative
sign of the policy function relating the two capital stocks along the transition to the
BGP. This downward-sloping policy function ensures that the capital ratio z and the
sectoral allocations of capitals u and s change more rapidly along the transition than
the normalized stock of physical capital k̂, which is the mechanism generating the larger
differences in TFP across economies reported by Table 3. Obviously, these results would
be the opposite if the policy function relating the two capital stocks were upward-
sloping. The sign of the slope of the policy functions then determines the nature of
the transition the economy follows, i.e., it determines the patterns of development and
of structural change, as well as the long-run level of TFP. In order to illustrate this
fact, let us assume that an economy is initially in the BGP and a sudden injection
of physical capital occurs. If the slope of the policy function relating the two capital
stocks along the transition is negative, the economy will converge after this shock to a
new BGP with a larger stock of human capital and a smaller physical to human capital
ratio than those corresponding to the initial BGP. In this case, the structural change
induced by the increase in physical capital has a positive effect on the long-run level
of TFP since the later depends negatively on the capital ratio (see equation (3.8) and
the definitions of u and s.) In contrast, if the policy function relating the two capital
stocks is upward-sloping, then the aforementioned shock in the stock of physical capital
leads the economy to another BGP with a smaller stock of human capital and a larger
capital ratio than the initial one. In this case, the injection of physical capital changes
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the sectoral structure in a way that reduces the long-run level of TFP. Clearly, the
opposite conclusions would be derived from studying the effects of a negative shock in
the stock of physical capital.

We proceed to characterize the relationship between the two capital stocks along
the equilibrium path and we show how our assumptions on preferences affect it. The
analysis of the sign of the slope of the policy functions was first addressed by Caballé
and Santos (1993) in the framework of a two-sector endogenous growth model without
consumption aspirations and a unique consumption good. They claim that: (i) the
economy belongs to the normal growth case when an increase in physical capital
stock results into an increase in human capital stock; (ii) the economy belongs to
the exogenous growth case when human capital stock does not increase when physical
capital stocks increases; and (iii) the economy belongs to the paradoxical growth case
when an increase in physical capital stock results into a decrease in human capital stock.
Therefore, the economy belongs to the normal growth case when the policy function
relating both capital stocks is downward-sloping, whereas the economy belongs to the
paradoxical growth case if this policy function is upward-sloping. The next proposition
characterizes the growth cases in our model, and shows how the introduction of the
consumption aspiration and of the second consumption good modifies the relationship
between the two capital stocks along the equilibrium path. In order to simplify the
analysis and to facilitate the comparison with the results of Caballé and Santos (1993),
we impose that β = 0, as these authors do.

Proposition 5.1. Assume that β = 0, and let us denote

v = 1 +

[
(1− σ) (1− θ) zY

γp∗

] (
Azα−1Y − δ − g∗

)
,

and

κ = v

[
1− (1− θ)

c0

ĉ∗

]
.

Then, the equilibrium corresponds to the normal growth case when ακχ < 1, to the
exogenous growth case when ακχ = 1, and to the paradoxical growth case when
ακχ > 1.

Note that v may be either positive or negative when σ > 1, whereas if σ ≤ 1
then v is larger than or equal to one. In particular, if v is negative then κ is also
negative and the equilibrium always belongs to the normal growth case. Note also that
if θ = 1 then κ = 1 and we obtain the result in Caballé and Santos (1993), i.e. the
equilibrium belongs to the normal growth case when αχ < 1, to the exogenous growth
case when αχ = 1, and to the paradoxical growth case when αχ > 1. In contrast, if
θ < 1 then κ can be either larger or smaller than one. This means that the introduction
of the consumption aspiration when θ < 1 may change the relationship between the
two capital stocks along the transition. Thus, economies with the same fundamentals
but different stocks of aspirations, that make them belong to different growth cases,
will exhibit different patterns of growth and structural change. Furthermore, the next
result shows that economies with the same fundamentals but different initial values of
capital stocks may also belong to different growth cases if θ ∈ (0, 1) and c0 > 0.
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Proposition 5.2. Assume that β = 0. Let us define

kn =
αvc0

(αv − σ)
[
(1− nzH)

(
AzαY

zY−zH

)
− (δ + g∗)

] .

If αv < σ, then the equilibrium belongs to the normal growth case. If αv > σ, then
those equilibrium paths converging to a BGP with k̂∗ < kn belong to the normal growth
case, whereas those equilibrium paths converging to a BGP with k̂∗ > kn belong to the
paradoxical growth case.

Because k̂∗ depends on the initial conditions, the previous result states that, for
those vectors of parameters satisfying that αv > σ, the economy belongs to any growth
case depending on the initial conditions on the capital stocks. Therefore, the result
in Proposition 5.2 is an important difference with respect to the result in Caballé
and Santos (1993), where the economy belongs to a particular growth case regardless
of the initial conditions. This difference arises because, while in the standard model
(θ = 1 and c0 = 0) the slope of the policy functions is only determined by the vector
of parameters, in our model this slope depends on the BGP to which the economy
converges (see Appendix C) and, thus, it is determined by the initial conditions.

Our results on the growth cases have interesting implications on convergence and
development accounting. In particular, because the slope of the policy functions
depends on the initial conditions, two economies with the same fundamentals but
different initial endowments of capitals and aspirations may diverge along the transition
to their BGPs. In fact, the difference between the capital ratio, the sectoral composition
and the TFP of these two economies may increase along the equilibrium path. This
divergence between the two economies would be meaningfully larger if these economies
belong to different growth cases. Figure 3 illustrates this extreme case. This figure
shows the equilibrium path of two economies that belong to different growth cases
because they have different initial stocks of human capital. Note that these two
economies are initially close and they diverge along the transition.14 On the one hand,
the poor economy belongs to the normal growth case. Therefore, along the transition,
the stock of physical capital rises, while the stock of human capital decreases. The
rise in k̂ implies that consumption composition wc decreases, and the reduction in ĥ
implies that the ratio z increases strongly, which yields a strong increase in the labor
share u. On the other hand, the rich economy belongs to the paradoxical growth case.
Therefore, along the transition, both capital stocks rise. This economy converges to a
BGP with a value of k̂∗ larger than in the poor economy, which means that the change
in wc is much larger in the former than in the later economy. In contrast, the rise in
ĥ implies that the increase in z is small compared to the increase in this ratio in the
poor economy and, thus, the change in u is lower in the rich economy.

[Insert Figure 3]

14Consider, for instance, the following parameter configuration: β = 0, α = 0.42, A = 1, γ = 0.022,
η = δ = 0, σ = 0.1, ρ = 0.02, θ = 0.333 and c0 = 0.032. In this case, those economies that converges to
a BGP with k̂∗ > 1.561 belong to the paradoxical growth case, whereas the economies converging to a
BGP with k̂∗ < 1.561 belong to the normal growth case.
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The main result of this section is that the contribution of capital to TFP may be
meaningfully different when we assume that the economies are out of BGPs. This
result arises because the structural change occurs along the transition to the BGP and,
moreover, because the initial conditions modify the slope of the policy functions. On
the one hand, when θ ∈ (0, 1), the initial stock of aspirations modifies this slope, so that
aspirations are a barrier to economic development that may explain divergence in the
patterns of economic development. On the other hand, when θ ∈ (0, 1) and c0 > 0, the
initial value of the capital stocks also changes the slope of the policy functions, which
also explains that economies may diverge in terms of sectoral composition, TFP and
GDP. Therefore, the endowments of capitals relative to the initial level of aspirations
determines the process of development followed by countries.

6. Concluding remarks and extensions

In this paper we have analyzed the dynamic equilibrium of an extended version of
the two-sector, constant returns to scale and endogenous growth model, in which
both sectors produce consumption and investment goods. We have shown that the
introduction of a second consumption good modifies the patterns of growth both
in the long run and during the transition if we assume that preferences are non-
homothetic. In the model, preferences are non-homothetic because they are subject
to an aspiration in consumption that is based on an international demonstration effect.
Under these assumptions, two economies with the same fundamentals but different
initial endowments will converge to a BGP with the same relative prices and growth
rates, although the capital ratio, the output-capital ratio and the sectoral composition
will be different. Furthermore, the initial conditions determine the relationship between
capital stocks along the equilibrium path leading the economy to the BGP. Thus,
according to our model, identical economies except for initial endowments may diverge
along the transition. Given that in this model the aggregate TFP depends on the
sectoral structure, this TFP is then endogenous because a rise in the capital stock
affects it by altering the sectoral structure.

The theoretical results in this paper extend the debate on development accounting
initiated by Mankiw et al. (1992). These authors show that the accumulation of
capital explains most of GDP differences between rich and poor economies. Klenow and
Rodriguez-Clare (1997) and Hall and Jones (1999) argue that this analysis is incomplete
because differences in technology yield differences in the accumulation of capitals. When
this is taken into account, it follows that differences in GDP are mainly explained by
differences in technology that result into differences in TFP. Our contribution shows
that the previous analysis is also incomplete when the TFP is endogenously determined.
In our paper, TFP is endogenous because sectoral structure depends on the capital
stocks. This means that a rise in the stock of capital changes the sectoral structure
and the TFP. We show that the contribution of the capital stocks to explain GDP
differences is larger when this endogeneity is taken into account. This suggests that an
appropriate analysis of the contributions of technology and of the stock of capital to
explain GDP differences should take into account this interaction between the capital
stock and TFP.

We should point out that our results do not reduce the role of technology in
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explaining international differences in GDP. On the contrary, we understand that they
reinforce its contribution because in our model an increase in the technological level
of one sector has the following effects in TFP (see equation (3.8)): (i) a direct effect
because this technology level is a primary component of our decomposition of TFP; (ii)
an indirect effect because technology directly determines the sectoral structure; and
(iii) another indirect effect because technology indirectly affects the sectoral structure
by means of the induced changes in capital accumulation. The first two effects have
already been computed in the development accounting exercises. However, to the best
of our knowledge, the third effect has not been considered before.15 Note that our
results reconcile the two sides of the debate on development accounting. On the one
hand, technology has a crucial role in explaining the observed disparities in GDP across
countries. On the other hand, part of the contribution of technology to explain these
international differences comes from its interaction with capital accumulation.

Our model may also have other applications to explain some macroeconomic facts,
that should be incorporated to the research agenda. For instance, it provides a possible
explanation to the following puzzle on the share of labor income on GDP: cross-section
data show that richer countries have a larger labor income share, whereas time-series
data show that the labor income share remains constant along the development process
of each country. Because labor income shares depend on the sectoral structure, our
model may help us to understand this puzzle. According to our results, the labor
income share is constant at a BGP, whereas this share differs from one BGP to another.
In particular, richer countries have a higher share of labor in sector X, which has a
higher labor income share. This explains that the labor income share is larger in richer
economies.

We have mentioned that there are different forces driving the growth of GDP in this
economy. This means that the growth rate may exhibit a non-monotonic behavior along
the development process. Therefore, the analysis of convergence seems a promising line
of research, that may show up the Kuznets’ facts concerning the relation between
sectoral composition of GDP and development. Another line of research is the study of
the effects of fiscal policy in the environment proposed in this paper. In our model, fiscal
policy also affects economic development by means of modifying sectoral composition.
In this environment, it seems interesting to study the level effects of fiscal policy. In
fact, some policies, that may not have effects on long-run growth, may modify the
sectoral composition and, thus, the level of GDP and TFP. As an example, note that
consumption taxes, by modifying the composition of consumption, would affect the
long-run level and composition of GDP.

15 In fact, Cordoba and Ripoll (2004) show that the sectoral structure is homogenous of degree zero
with respect to A and γ, so that the direct effect of technology on sectoral structure only arises if it
alters the ratio A

γ
. However, we have shown that technology may affect TFP even when the later ratio

is not altered because of the effect on capital accumulation.
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Appendix

A. The Equilibrium path

The first order conditions of the representative agent’s maximization problem are:

[
θ (1− σ)U

c− c

]
e−ρt = µ1, (A.1)

[
(1− θ) (1− σ)U

x

]
e−ρt = µ2, (A.2)

(
αY

s

)
µ1 =

(
βH

1− s

)
µ2, (A.3)

[
(1− α)Y

u

]
µ1 =

[
(1− β)H

1− u

]
µ2, (A.4)

(
αY

k
− δ

)
+

(
βH

k

)(
µ2
µ1

)
= −

·

µ1
µ1
, (A.5)

[
(1− α)Y

h

](
µ1
µ2

)
+

[
(1− β)H

h
− η

]
= −

·

µ2
µ2
. (A.6)

We now proceed to obtain the system of dynamic equations that characterizes
the equilibrium. First, combining (A.3) and (A.4), we obtain the expressions (2.12)
and (2.6). Moreover, using the definitions of the ratios z, zY , and zH ,we obtain the
expression of u given by (2.13) and

s =
(zY
z

)( z − zH

zY − zH

)
. (A.7)

Second, from the definition of p, and using equations (A.3), (A.4), (A.5) and (A.6), we
get the equation that drives the growth of prices given by (2.5). Moreover, note that
(A.1) and (A.2) imply that (2.7) holds. Third, log-differentiating the definition of w
with respect to time, we get that the growth rate of this variable is

ẇ

w
= (1−wc)

(
ṗ

p
+
ẋ

x

)
+wc

(
ċ

c

)
, (A.8)

where wc is obtained using (2.7) and is defined in (2.8). Differentiating with respect to
time (A.1), (A.2) and (2.7), we obtain the growth rate of c and x. Using these growth
rates, equation (A.8) yields the growth rate of w given by (2.9). Finally, we use (2.7)
to rewrite c

k
and x

h
as functions of p, w, k and h. Given these functions, we obtain

from (2.1) and (2.2) the growth rates of k and h as are given by (2.10) and (2.11),
respectively.
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B. The steady-state equilibria

B.1. Proof of Proposition 3.1

By using (2.4), (2.5), (2.9), (2.10), and (2.11), it can be shown that the variables w, p,
k, h and c grow at a constant rate only if the price level is constant and satisfies (3.1)
and the growth rates of w, k, h and c coincide and satisfy (3.2). The uniqueness of the
price level and of the long-run growth rate follow by noticing that the left hand side of
(3.1) is a monotonic function of the price. Finally, the existence of a price level follows
from continuity of (3.1) and by noticing that the left hand side of this equation changes
its sign as the price rises from zero.

B.2. Proof of Proposition 3.2

We first use the definition of the normalized variables to rewrite the equations (2.9),
(2.10), and (2.11) as follows:

·

k̂

k̂
= A

(
uĥ

k̂

)
zαY −

θŵ + (1− θ) c0

k̂
− (δ + g∗), (B.1)

·

ĥ

ĥ
= γ (1− u) zβH − (η + g∗)− (1− θ)

(
ŵ − c0

pĥ

)
, (B.2)

·

ŵ

ŵ
=

(
ŵ − c0

σŵ

)[
βγpz

β−1
H − δ − ρ− σg∗ − (1− θ) (1− σ)

(
ṗ

p

)]
. (B.3)

Given the initial conditions k0, h0, and c0, we define an equilibrium path of the

normalized variables
{
p, k̂, ĥ, ŵ

}
∞

t=0
as a path that solves the system of differential

equations composed of (2.5), (B.1), (B.2), and (B.3), together with (2.12), (2.6), (2.13),
(3.2), (2.14) and (2.15).

From the previous dynamic system we can obtain the stationary values of the

normalized variables k̂∗, ĥ∗, ŵ∗. In a BGP
·

k̂ =
·

ĥ = 0, and then (B.1) and (B.2)
can be rewritten as

A

(
u∗ĥ∗

k̂∗

)
zαY −

θŵ∗ + (1− θ) c0

k̂∗
− δ − g∗ = 0, (B.4)

γ (1− u∗) zβH − (η + g∗)− (1− θ)

(
ŵ∗ − c0

p∗ĥ∗

)
= 0. (B.5)

Let us define z∗ = k̂∗

ĥ∗
and q∗ = ĉ∗

ĥ∗
. Using the definition of ŵ and (B.4), we obtain

ĉ∗

ĥ∗
= (z∗ − zH)

(
AzαY
zY−zH

)
− (δ + g∗) z∗. (B.6)

25



Combining (B.6) with (B.5), we obtain

ĉ∗ = c (z∗) =
c0

1−

γz
β
H(zY −z

∗)
zY−zH

−(η+g∗)

(
1−θ
θp∗

)[
(z∗−zH)

(
Azα

Y
zY−zH

)
−(δ+g∗)z∗

]

. (B.7)

By introducing (B.7) in (B.6), and after some algebra we get the following equation:

a z∗ + b = 0, (B.8)

where

a =

(
1− θ

θp∗

)[(
AzαY
zY−zH

)
− (δ + g∗)

]
+

γz
β
H

zY−zH
−

(
1− θ

θp∗

)(
c0

k̂∗

)
, (B.9)

and

b = (η + g∗)− zH

(
AzαY
zY−zH

)(
1− θ

θp∗

)
−
γz

β
HzY

zY−zH
. (B.10)

The following lemma proves that there exists a positive root of equation (B.8). This
root is a function of k̂∗ and it is given by

z∗ = z̃
(
k̂∗
)
= −

b

a
. (B.11)

Lemma B.1. If α > β then a > 0 and b < 0, whereas a < 0 and b > 0 when α < β.

Proof. On the one hand, (B.4) implies that

(
AzαY
zY−zH

)
− (δ + g∗) =

(zH
z

)( AzαY
zY−zH

)
+
ĉ∗

k̂∗
, (B.12)

and a simplifies as follows

a =

(
1− θ

θp∗

)[(zH
z∗

)( AzαY
zY−zH

)
+

(
ĉ∗ − c0

k̂∗

)]
+

γz
β
H

zY−zH
,

which is positive when α > β (i.e., zY > zH) and ĉ− c0 > 0. In this case, b is negative
since the equation (B.2) requires that in the BGP the following inequality is satisfied:

γz
β
HzY

zY−zH
> η + g∗.

On the other hand, when α < β (i.e., zY < zH) one can directly see from (B.10) and
(B.9) that b > 0 and a < 0, respectively.

We proceed to characterize the values of ĥ∗, ĉ∗ and ŵ∗ as functions of k̂∗. First,

note that ĥ∗ = k̂∗

z∗
, so that from (B.11) we get

ĥ∗ = h̃
(
k̂∗
)
= m+ nk̂∗, (B.13)
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where

m =

(
1− θ

θ

)(
c0

bp∗

)
, (B.14)

and

n = −

(
1

b

){(
1− θ

θp∗

)[(
AzαY
zY−zH

)
− (δ + g∗)

]
+

γz
β
H

zY−zH

}
. (B.15)

Lemma B.2. The function (B.13) satisfies the following properties: (i) n > 0; and (ii)
if α > β then m ≤ 0, whereas m ≥ 0 when α < β.

Proof. The part (i) follows from Lemma B.1, the condition (B.12) and from the fact
that the sign of zY−zH coincides with that of α−β. The part (ii) is directly proved by
noting that the sign of m coincides with that of b.

Second, given the stationary value of z∗, and by using (B.6), we get

ĉ∗

ĥ∗
= (z∗ − zH)

(
AzαY
zY−zH

)
− (δ + g∗) z∗. (B.16)

Thus, using (B.16) and (B.13), we get

ĉ∗ = c̃
(
k̂∗
)
= d+ fk̂∗, (B.17)

where

d = −m

(
AzHz

α
Y

zY − zH

)
, (B.18)

and

f = (1− nzH)

(
AzαY
zY−zH

)
− (δ + g∗) . (B.19)

Lemma B.3. The function (B.17) satisfies that d > 0 and f > 0.

Proof. First, from Lemma B.2 and from the fact that the sign of zY−zH coincides
with that of α− β, it can be shown that d > 0. Second, observe that

f =

(
AzαY
zY−zH

)
− (δ + g∗)

︸ ︷︷ ︸
ξ

− nzH

(
AzαY
zY−zH

)
,

and using (B.15) and (B.10), we obtain

bf = ξ

[
(η + g∗)−

γz
β
HzY

zY−zH

]
+

(
γz

β
H

zY−zH

)
zH

(
AzαY
zY−zH

)
. (B.20)

Observe that (B.2) implies that

(η + g∗)−
γzY z

β
H

zY−zH
< −γzβH

(
z

zY−zH

)
. (B.21)
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Using the previous inequality, we can already show the sign of f. On the one hand, if
zY−zH > 0, then (B.20) and (B.21) implies that

bf < zH

(
γz

β
H

zY−zH

)(
AzαY
zY−zH

)
,

so that f > 0 because in that case b < 0. On the other hand, if zY−zH < 0, then we
get from (B.20) and (B.21) that

bf > −ξγzβH

(
z

zY−zH

)
+ zH

(
γz

β
H

zY−zH

)(
AzαY
zY−zH

)
.

Thus, using the definition of u∗ and ξ, the previous inequality can be written as

bf >

(
γz

β
H

zY−zH

)
[−u∗AzαY + z∗ (δ + g∗)] .

Therefore, given that (B.4) implies that z∗ (δ + g∗)−u∗AzαY < 0, we obtain that in this
case f > 0 because b > 0 as zY−zH < 0.

Finally, we use the definition of ŵ∗ and (B.17) to obtain

ŵ∗ = l + jk̂∗ (B.22)

where

l =
d− (1− θ) c0

θ
,

and

j =
f

θ
.

From Lemma A.3 is obvious that j > 0. However, the sign of l can not be characterized
analytically.

To close the proof of Proposition 3.2, we must show that a stationary solution{
g∗, p∗, ĥ∗, ŵ∗

}
of the system of equations (2.5), (B.1), (B.2) and (B.3) for a given

k̂∗ > 0 is a BGP. First, this stationary solution must satisfy that ĥ∗ > 0 and ĉ∗ > c0.
Thus, we must impose constraints on the value of k̂∗. On the one hand, by using (3.6),
it can be shown that ĥ∗ ≥ 0 if and only if k̂∗ ≥ kh where

kh = −
m

n
. (B.23)

On the other hand, by using (B.17) it can be shown that ĉ∗ ≥ c0 if and only if k̂
∗ ≥ kc

where

kc =

(
c0

bf

){
b+

(
1− θ

θ

)[
AzHz

α
Y

p (zY − zH)

]}
. (B.24)

Moreover, it can be shown that kc ≥ max
{
0, kh

}
. First, after some algebra we get that

kc> kh when

1 > −

(
1− θ

θ

)(
1

bp∗

)


(
AzαY

zY−zH

)
− (δ + g∗)

n


 .
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Using the definition of n in (B.15), the previous inequality implies that

−

(
1

b

)(
γz

β
H

zY−zH

)
> 0,

which is satisfied as b (zY−zH) < 0. Second, using (B.10), we get

kc =

(
c0

bf

)

(η + g∗)−

γz
β
HzY

zY−zH︸ ︷︷ ︸
ϑ


 .

Note that if zY > (<) zH then b < (>) 0 and (B.2) implies that ϑ < (>) 0. Now, it is
obvious that kc > 0. Therefore, ĥ∗ > 0 and ĉ∗ > c0 if and only if k̂

∗ ≥ kc.

We must also prove that the transversality conditions (2.14) and (2.15) are satisfied
at steady-state equilibrium. Note that using (A.1) and (2.7), we get that the
transversality condition (2.14) is satisfied when

lim
t→∞

− ρ− σ

(
ċ− cg∗

c− c

)
+ (1− θ)(1− σ)

ṗ

p
+
k̇

k
< 0,

which holds if (1− σ) g∗ < ρ . Following a similar procedure, it can be shown that the
transversality condition (2.15) is also satisfied when (1− σ) g∗ < ρ .

The condition (1− σ) g∗ < ρ also implies that the utility function is bounded. To
see this, note that the utility function is bounded when lim

t→∞
e−ρtU(c− c, x) = 0 . By

using, (2.7), we get that the previous limit holds if

lim
t→∞

− ρ+ (1− σ)

(
ċ− cg∗

c− c

)
< 0 ,

which is satisfied if −ρ+ (1− σ) g∗ < 0 . Note that, even though c → c, the utility
function is bounded when this condition is satisfied.

B.3. Proof of Proposition 3.5

On the one hand, from the definition of u∗ in equation (2.13), we get that this
variable only depends on z∗ and p∗. Since p∗ does not depend on k̂∗, we get directly
from Proposition 3.4 the relationship between u∗ and k̂∗. On the other hand, the
proof of Proposition 3.2 states that ĉ∗ rises with k̂∗. Moreover, from (2.8) we observe
that the fraction of consumption expenditures wc decreases with ĉ∗ if c0 > 0 and
θ ∈ (0, 1). Therefore, the dependence of w∗c on k̂

∗ follows directly from the two previous
relationships.

C. The dynamic equilibrium

C.1. Proof of Proposition 3.6

Using (2.5), (B.1), (B.2), and (B.3), we obtain the following Jacobian matrix evaluated
at a BGP:
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J =




a11 a12 −1 a14

a21 a22 a23 a24

0 0 0 a34

0 0 0 a44




,

where

a11 ≡

·

∂k̂

∂k̂
=

AzαY
zY − zH

− (δ + g∗) ,

a12 ≡
∂
·

k̂

∂ĥ
= −

AzHz
α
Y

zY − zH
,

a14 ≡
∂

·

k̂

∂p
=

[
Aĥ∗zαY
(α− β) p∗

](
αu∗ −

z∗

zY − zH

)
,

a21 ≡

·

∂ĥ

∂k̂
= −

γz
β
H

zY − zH
,

a22 ≡

·

∂ĥ

∂ĥ
=

(
1− θ

θ

)(
ĉ∗ − c0

p∗ĥ∗

)
−

γz∗z
β
H

zY − zH
,

a23 ≡

·

∂ĥ

∂ĉ
= −

(
1− θ

θ

)(
1

p∗

)
,

a24 ≡

·

∂ĥ

∂p
=

[
γĥ∗z

β
H

(α− β) p∗

][
β(1− u∗)−

z∗

zY − zH

]
+

(
1− θ

θ

)(
ĉ∗ − c0

p2

)
,

a34 ≡

·

∂ĉ

∂p
=

(
ĉ∗ − c0

σ

)[
βγz

β−1
H +

(β − 1)βγzβ−1H

(α− β)
− (1− θ)(1− σ)

a44

p∗

]
,

a44 ≡

·

∂p̂

∂p
= −

(
βγp∗z

β−1
H

α− β

)[
1− α+ (1− β)

(
zH

p∗

)]
.

It is immediate to see that the eigenvalues λi, i = 1, 2, 3, 4, of J are λ1 = 0, λ2 = a44
and the two roots λ3 and λ4 are the solution of the following equation:

Q (λ) = λ2 − λ(a11 + a22) + a11a22 − a12a21 = 0.
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Note that λ2 < (>) 0 if α > (<)β. In order to obtain the sign of λ3 and λ4, we
characterize the elements of the polynomial Q (λ). First, using (B.2), and rearranging
terms, we get

a11a22 − a12a21 =

=

[
AzαY

zY − zH
− (δ + g∗)

](
γzY z

β
H

zY − zH
− η − g∗

)

+

[
AzαY zH

zY − zH
− (δ + g∗) z

](
γz

β
H

zY − zH

)
.

By manipulating the previous equation by using (B.10), (B.15) and (B.19), we obtain
a11a22 − a12a21 = −bf, which is positive when zY > zH and negative otherwise. Next,
we consider the other element of Q (λ) . After some manipulation, where we basically
replace δ + g∗ from (B.6), we get

a11 + a22 =
AzαY zH

(zY − zH) z∗
+
ĉ∗

k̂∗
+

(
1− θ

θ

)(
ĉ∗ − c0

p∗ĥ∗

)
+

γz
β
Hz

∗

zY − zH
,

which is positive when zY > zH . It follows that one of the roots of the polynomial, for
example λ3 is always positive and the other one, λ4, is positive if α > β and negative
otherwise. Note that, regardless of the relation between α and β, there is a unique
negative root, which means that every BGP in the manifold is saddle path stable.

C.2. Linear approximation of the policy functions

We proceed to approximate the policy functions around the set of BGPs. Because
there are two control variables and two positive roots, using Proposition 3.6 we get the
following linear approximation of the equilibrium saddle path:

E (t) = V +A+Beλ̂t. (C.1)

where E (t) = (k̂ (t) , ĥ (t) , ĉ (t) , p (t)), λ̂ is the negative eigenvalue of J , V =
(Vk, Vh, Vc, Vp) is a vector of constant terms, A = (Ak, Ah, Ac, Ap) is the eigenvector

associated to the null root and B = (Bk, Bh, Bc, Bp) is the eigenvector associated to λ̂.
We proceed to find some properties of the vectors V, A and B. First, the relationship
between the elements of the eigenvector A follows from relationship JA = 0. Solving
this system of ordinary equations, we get that Ap = 0, Ah = ahAk, and Ac = acAk,

where

ah = −
a21 + a23a11

a22 + a23a12
,

ac =
a11a22 − a12a21

a22 + a23a12
.

By using (B.2) and (B.15), we obtain that ah = n and ac = f.

Second, the relation between the elements of the eigenvector B follows from the
system of equations (J − λ)B = 0, where I is the identity matrix. Assume that α > β,
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then λ̂ = a44. Thus, we obtain from the previous matrix relationship that Bh = bhBp,

Bk = bkBp, and Bc = bcBp, where

bh =
a21

(
a14 −

a34
a44

)
− (a11 − a44)

(
a23a34
a44

+ a24

)

(a22 − a44) (a11 − a44)− a21a12
,

bk =
a12

(
a24 + a23

a34
a44

)
− (a22 − a44)

(
a14 −

a34
a44

)

(a22 − a44) (a11 − a44)− a21a12
,

bc =
a34

a44
.

Finally, because λ̂ < 0 the set of paths given by (C.1) converges to the following
stationary solution:

k∗ = Vk +Ak,

h∗ = Vh + nAk,

c∗ = Vc + fAk,

p∗ = Vp.

This stationary solution corresponds to the manifold of BGPs obtained in Section 3
when Vk = 0, Vh = m, Vc = d, Vp = p∗ and Ak = k̂∗.

Therefore, the linear approximation of the policy functions is given by

k̂ (t) = k̂∗ + bkBpe
λ̂t,

ĥ (t) = m+ nk̂∗ + bhBpe
λ̂t,

ĉ (t) = d+ fk̂∗ + bcBpe
λ̂t,

p (t) = p∗ +Bpe
λ̂t.

Finally, using the initial conditions k̂ (0) and ĥ (0) , we get

k̂∗ =
bhk̂ (0)− bkĥ (0) + bkm

bh − nbk
,

Bp =
ĥ (0)− nk̂ (0)−m

bh − nbk
.

C.3. Proof of Proposition 5.1

We study the relationship between the two capital stocks when β = 0. This slope
is characterized by the sign of bh

bk
. In order to find this sign we must redefine the

equilibrium dynamics of our economy under the assumption β = 0. First, note that if
β = 0 then s = 0 and, thus, zH = 0. Moreover, it can be proved that zβH converges to
unity as β tends to zero. Finally, to characterize the equilibrium dynamics in the case
with β = 0 we replace αAzα−1Y by γβpzβ−1H . Given this properties of the economy when
β = 0, and using the elements of the Jacobian matrix in the proof of Proposition 3.6,
it can be shown that the eigenvector simplifies as follows
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bh

bk
= −

a21

(
a14 −

a34
a44

)
− (a11 − a44)

(
a23a34
a44

+ a24

)

(a22 − a44)
(
a14 −

a34
a44

) ,

as a12 = 0 when β = 0. The denominator is negative because

a22 − a44 =

(
1− θ

θ

)(
ĉ∗ − c0

pĥ∗

)
+ γu∗ + (1− α)Azα−1y > 0,

and

a14 −
a34

a44
=
(α− 1)A

αp∗
zα−1Y k̂∗ −

(
ĉ∗ − c0

σ

)[
1− (1− θ)(1− σ)

p∗

]
< 0.

It then follows that the sign of the eigenvector coincides with the sign of numerator,
that we will denote by N. We get that

N = −

(
γ

zY

){
(α− 1)Azα−1Y k̂∗

αp∗
−

(
ĉ∗ − c0

p∗

)[
1− (1− θ)(1− σ)

σ

]}
−

[
ĉ∗

k̂∗
− (α− 1)Azα−1y

]{
γĥ∗z∗

αzY p∗
−

[
ĉ∗ − c0

(p∗)2

][
(1− θ) (1− σ)

σ

]}
.

Since the marginal products of human capital equalize across sectors, the following
condition holds:

γp∗ = (1− α)Azαy .

By using the previous condition, we get after some manipulation that

N =

(
ĉ∗γ

αp∗zY

){[
α (ĉ∗ − c0)

σĉ∗

][
1 +

(
(1− σ) (1− θ) zY

p∗γ

)(
ĉ∗

k̂∗

)]
− 1

}
.

Using (B.4), and since u∗ = k̂∗

ĥ∗zY
, we get

N =

(
ĉ∗γ

αp∗zY

)




[
α (ĉ∗ − c0)

σĉ∗

] [
1 +

(
(1− σ) (1− θ) zY

p∗γ

)(
Azα−1y − δ − g∗

)]

︸ ︷︷ ︸
v

− 1




.

(C.2)
Observe that v > 1 when σ < 1, whereas if σ > 1 then either v ∈ (0, 1) or v < 0.

The intertemporal elasticity of substitution satisfies

χ =
ĉ∗ − c0

σ [ĉ∗ − (1− θ) c0]
. (C.3)

Using (C.3) to replace ĉ∗ − c0 in (C.2), we get that

N =

(
ĉ∗γ

αp∗zY

){
αvχ

[
ĉ∗ − (1− θ) c0

ĉ∗

]
− 1

}
. (C.4)

The results in Proposition 5.1 then follows.
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C.4. Proof of Proposition 5.2

Note from (C.4) that if v < 0 then N < 0 and if v > 0 then N < (>) 0 when

1−
σ

αv
< (>)

c0

ĉ∗
. (C.5)

Using the definition of ĉ∗ as a function of k̂∗ established by Lemma B.3 in the proof of
Proposition 3.2 (see Appendix B), Proposition 5.2 directly follows from (C.5).

34



Table 1. Comparison at BGP16

The case with β = 0.3217

Rich Economy Poor Economy Comparison Accounting18

k̂R = 1 k̂P = 0.63 k̂R

k̂P
= 1.58 Ck = 39.5%

ĥR = 0.12 ĥP = 0.073 ĥR

ĥP
= 1.66 Ch = 60%

TFPR = 1.007 TFPP = 1.004 TFPR

TFPP
= 1.002 CTFP = 0.5%

Q̂R = 0.29 Q̂P = 0.18 Q̂R

Q̂P
= 1.63

wR
c = 0.6 wP

c = 0.95
uR = 0.4 uP = 0.5
c
cR
= 0.96 c

cP
= 0.99

χR = 0.21 χP = 0.026

The case with β = 0.1519

Rich Economy Poor Economy Comparison Accounting

k̂R = 1 k̂P = 0.6986 k̂R

k̂P
= 1.4314 Ck = 30.68%

ĥR = 0.2152 ĥP = 0.1257 ĥR

ĥP
= 1.7123 Ch = 63.53%

TFPR = 1.0768 TFPP = 1.0466 TFPR

TFPP
= 1.0288 CTFP = 5.78%

Q̂R = 0.4418 Q̂P = 0.2704 Q̂R

Q̂P
= 1.6339

wR
c = 0.6 wP

c = 0.95
uR = 0.2685 uP = 0.384
c
cR
= 0.9667 c

cP
= 0.9974

χR = 0.21 χP = 0.026

The case with β = 020

Rich Economy Poor Economy Comparison Accounting

k̂R = 1 k̂P = 0.97 k̂R

k̂P
= 1.03 Ck = 3%

ĥR = 0.58 ĥP = 0.33 ĥR

ĥP
= 1.76 Ch = 67%

TFPR = 1.35 TFPP = 1.17 TFPR

TFPP = 1.16 CTFP = 30%

Q̂R = 0.99 Q̂P = 0.6 Q̂R

Q̂P
= 1.63

c
cR
= 0.96 c

cP
= 0.99

wR
c = 0.6 wP

c = 0.95
uR = 0.17 uP = 0.3
χR = 0.21 χP = 0.026

16The common parameters are α = 0.42, A = 1, η = δ = 0.056, σ = 2, ρ = 0.012 and θ = 0.0476.
17The case is defined by parameters are β = 0.32, γ = 0.0862 and c0 = 0.0511.
18The contributions of the different factors to explain GDP differences is obtained from (3.8)

as follows: CTFP = ln
(
TFPR/TFPP

)/
ln
(
QR/QP

)
, Ch = (1− α)

[
ln
(
ĥR
/
ĥP
)/

ln
(
QR/QP

)]
,

and Ck = α
[
ln
(
k̂R
/
k̂P
)/

ln
(
QR/QP

)]
, where the superscripts R and P indicate the rich and poor

economies, respectively.
19The case is defined by β = 0.15, γ = 0.1105 and c0 = 0.0759.
20The case is defined by β = 0, α = 0.42, γ = 0.112 and c0 = 0.18433.
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Table 2.21

c0 = 0.017 c0 = 0.025 c0 = 0.05 c0 = 0.1 c0 = 0.15

k̂∗ = 1.951 k̂∗ = 1.955 k̂∗ = 1.975 k̂∗ = 2 k̂∗ = 2.03

ĥ∗ = 0.242 ĥ∗ = 0.241 ĥ∗ = 0.240 ĥ∗ = 0.238 ĥ∗ = 0.236

Q̂∗ = 0.5864 Q̂∗ = 0.5862 Q̂∗ = 0.5860 Q̂∗ = 0.5858 Q̂∗ = 0.5856
u∗ = 0. 351 u∗ = 0.360 u∗ = 0.387 u∗ = 0.442 u∗ = 0.498
w∗c = 0.458 w∗c = 0.488 w∗c = 0.576 w∗c = 0.753 w∗c = 0.930

21The parameters are α = 0.42, β = 0.32, A = 1, γ = 0.086, δ = η = 0.0 56, ρ = 0.01185, σ = 2,
θ = 0.4, ĥ0 = 0.1 and k̂0 = 4. These values coincide with the ones of Table 1, with the exception of
θ. We consider here a smaller value of θ to avoid that small differences in the minimum consumption
yield huge differences in wc.
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Table 3. Comparison along the transition22

The case with β = 0.3223

Rich Economy Poor Economy Comparison Accounting

k̂R = 1 k̂P0 = 0.5682
k̂R

k̂P
0

= 1.76 Ck = 47.05%

ĥR = 0.12 ĥP0 = 0.0777
ĥR

ĥP
0

= 1.567 Ch = 51.67%

TFPR = 1.007 TFPP
0 = 1.003

TFPR

TFPP
0

= 1.0065 CTFP = 1.28%

Q̂R = 0.29 Q̂P
0 = 0.1792

Q̂R

Q̂P
0

= 1.6564

uR = 0.4 uP0 = 0.8507
uR

uP
0

= 0.4642

wR
c = 0.6 wP

0 = 0.9511
wRc
wP
0

= 0.6312
c
cR
= 0.96 c

cP
0

= 0.9974

The case with β = 0.1524

Rich Economy Poor Economy Comparison Accounting

k̂R = 1 k̂P0 = 0.6287
k̂R

k̂P
0

= 1.5905 Ck = 37.04%

ĥR = 0.2152 ĥP
0 = 0.106

ĥR

ĥP
0

= 1.6484 Ch = 55.10%

TFPR = 1.0768 TFPP
0 = 1.0331

TFPR

TFPP
0

= 1.0423 CTFP = 7.86%

Q̂R = 0.4418 Q̂P
0 = 0.261

Q̂R

Q̂P
0

= 1.6925

uR = 0.2685 uP0 = 0.458
uR

uP
0

= 0.5861

wR
c = 0.6 wP

0 = 0.9526
wRc
wP
0

= 0.6297
c
cR
= 0.9667 c

cP
0

= 0.9975

The case with β = 025

Rich Economy Poor Economy Comparison Accounting

k̂R = 1 k̂P0 = 0.8724
k̂R

k̂P
0

= 1.1463 Ck = 10.48%

ĥR = 0.58 ĥP
0 = 0.336

ĥR

ĥP
0

= 1.7270 Ch = 57.91%

TFPR = 1.35 TFPP
0 = 1.1401

TFPR

TFPP
0

= 1.1888 CTFP = 31.61%

Q̂R = 0.99 Q̂P
0 = 0.5719

Q̂R

Q̂P
0

= 1.7284

uR = 0.17 uP
0 = 0.336

uR

uP
0

= 0.5252

wR
c = 0.6 wP

0 = 0.9544
wRc
wP
0

= 0.6288
c
cR
= 0.96 c

cP
0

= 0.9976

22The common parameters are α = 0.42, A = 1, η = δ = 0.056, σ = 2, ρ = 0.012 and θ = 0.0476.
23The case is defined by β = 0.32, γ = 0.0862 and c0 = 0.0511.
24The case is defined by β = 0.15, α = 0.42 γ = 0.1105 and c0 = 0.0759.
25The case is defined by β = 0, γ = 0.112 and c0 = 0.18433.
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