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Abstract

For many years the economic time series analysis has been domi-
nated by the linear paradigm and the Box-Jenkins approach. Lately
the influence of the nonlinear models have extended so far this kind of
data, especially to study the business cycle in macroeconomics data.
The aim of this paper is to analyze the nonlinearities of Spanish Econ-
omy, using a Self-Exciting Threshold Autoregressive model (SETAR)
to estimate the Spanish Index of Industrial Production. The hypothe-
sis of linearity in the model is refused, and the SETAR model improves
the fitting of the series, moreover it allows to add information above
the dynamic of the series. The relevance of the results lies in the
analysis of the cyclical fluctuation of the Spanish economy. Finally
it is performed an exercise of prediction where the results show that
root-mean-square error of the SETAR is lower than the linear model.
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1 Introduction

For a long time the Box-Jenkins approach and the use of linear models dom-

inated the times series univariate analysis. The long-lasting popularity of

Box-Jenkins approach is justified by its usefulness in the analysis of time

series data. The ARIMA models are very simple to specify, estimate and

interpret. However, the empirical evidence of most of the existing literature

outlines the limitations of the ARIMA models in case of time series generated

by a nonlinear data generation process (DGP). This is logical, because the

linear modelling is always the first representation of an unknown dynamic

relationship, and when the dynamic is nonlinear the ARIMA model is unable

to identify this nonlinear relationship, Tong (1990).

The nonlinear approach has a large tradition in the field of the finance

and monetary markets, where the presence of nonlinearities and asymmetries

are more evident. Meanwhile the use of nonlinear times series models has

been neglected for a long time in the economic times series area, Franses and

Van Dijk (2000). The most important feature of the nonlinear time series

models is that their operation in the presence of different state of the world

or regimes allows the possibility for the dynamic behavior to depend on the

regimes occurring at any given point in the time (Tong, 1990).

The nonlinear models can be though as a “piecewise” linear approxima-

tion of a nonlinear stochastic process via partitioning its state-space into

several subspaces. The use of nonlinear model is highly related to the con-

cept of business cycle, because they represent better than the linear models
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the asymmetries present in the cycle. Although business cycle asymmetry

is an old topic in economics (for example, Mitchell (1927), Keynes (1936)),

until recently economists have generally neglected nonlinearities in empirical

business cycle modeling preferring the use of linear time series specifications.

In spite of that lack of interest, the nonlinear analysis has extended its

influence to macroeconomics data. The reason of this last fact is the capacity

of the nonlinear analysis to recover the asymmetries in the business cycle to

study the GDP or other macroeconomic data. The first study using nonlin-

ear models for the analysis of the asymmetries in the US GDP was the work

published by Hamilton (1989), that generated an important series studies in

the same field. After this seminal paper more have been written in the same

line research, as Tiao and Tsay (1991)1, Teräsvirta and Anderson (1992),

Potter (1995), Hansen (1997), Hansen (2000).

All these works study the nonlinearities in the USA economy and the

asymmetry in its business cycle. Asymmetrical movements involve the pos-

sibility of differention between the the shape of expansive regime and the

shape of recessive regime in amplitude and length. Moreover it involves that

the function which represents the stochastic process may have a different dy-

namic around the turning points. The nonlinear models are the best models

to represent this feature of the economic time series and this is the reason of

their recent success. More recently a new research line using these results to

1They estimate a TAR model for the rate of growing of American GDP with three
regimes, in this way they can describe the existence of two regime that dominate the
evolution of the GDP, one when the economy is in an expansive phase and another when
the economy is in a phase of recession.
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analyze the European economy has appeared2.

In general these researchers use the same nonlinear models created ten

years ago: Smooth Transition Models and Markov Switching Models. But

they prefer to use monthly (or quarterly) coincident economic indicators of

business cycles than the GDP or other real economic variables3. The intro-

duction of nonlinear analysis suppose another important field of study: the

forecasting accuracy. Clements and Smith (1997) declare that even if the

nonlinear models can provide better estimations than the linear models, not

ever can predict better. In this sense there exists a big debate between those

who state the nonlinear models can predict better and those who state that

they can not predict better.

The proposition of this paper is the analysis of the possible nonlinear-

ity of the Spanish economy using a Threshold Autoregressive Model with

two regimes following the model proposed by Hansen (1997), Hansen (2000).

This nonlinear model is a strong instrument of analysis wich mixes both the

simplicity and the capacity to describe very well a nonlinear series. How

say Hansen (1997) “Threshold Autoregressive (TAR) models are relatively

simple to specify, estimate, and interpret, at least in comparison with many

other nonlinear time series models”.

2Among he recent articles published in this area we can cite Andreano and Savio (2002),
Delli Gatti et al. (1998), Öcal (2000).

3There has been a large discussion on the usefulness of the GDP and the Industrial
Index Production for the performance of the analysis of the business cycle or if it is better
to construct an indicator ad hoc to better study the cycle in the economy.
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The times series variable used to represent the Spanish economy is the

Industrial Index Production, wich is a good variable proxy to describe the

whole economy. Our main goal is to establish if a simple nonlinear model

can fit and forecast in a better way than a linear model. Our attention

is focused on the univariate analysis of the IPI in order to observe if the

times series dynamic can be approximated to a nonlinear stochastic process.

All types of considerations related to business cycle wich suppose the exis-

tence of the nonlinear dynamics are avoided in this paper. In the next the

Threshold Autoregressive model is presented in brief. The third section deals

with the preliminary analysis of the data to argue the opportunity to use a

nonlinear model. In the fourth section are estimated a TAR model and a

ARIMA model, comparing the two models. Finally a short forecasting ex-

ercise is performed in order to check the forecasting accuracy of the TAR

model compared to the linear ARIMA.

2 Specification, estimation and diagnostic of

the TAR model

In general the Threshold autoregressive model (TAR) can be considered as

an AR model where the autoregressive parameters depend on the regime or

state. A TAR model with k (k ≥ 2) regimes is defined as:

yt =

{
(α0 + α1yt−1 + · · ·+ αpyt−p) + et, if I(qt ≤ γ)
(β0 + β1yt−1 + · · ·+ βpyt−p) + et, if I(qt > γ)

(1)

where qt is the threshold variable that defines which regime is operating

at the time t and the change from a regime to the other is determined by the

5



indicator function I(·),

I(condition) =

{
1 if condition is satisfied
0 otherwise

Generally the threshold variable is a known function of the data qt =

q(yt, yt−1, · · · , · · · yt−p), but a special interest arises when the threshold vari-

able qt is taken to be a lagged value of the time series itself, that is, qt = yt−d

for a certain integer d ≥ 0. In this case the resulting model is called a

Self-Exciting TAR (SETAR) model, (Franses and Van Dijk, 2000). The

autoregressive order of the model is defined by p ≥ 1 and γ is the thresh-

old parameter. The parameters αj are the autoregressive coefficients when

(qt ≤ γ), and βj are the coefficients when (qt > γ). The error et is assumed

iid (0, σ2) 4.

Equation 1 can be rewritten as follows:

yt = xt
′αI(qt ≤ γ) + xt

′βI(qt > γ) + et (2)

where: xt = (1 yt−1 · · · yt−p)′ is the vector of the data, and the vectors

of coefficients are α = (α0 α1 · · · αp)′, β = (β0 β1 · · · βp)′, or in a more

compact form:

yt = xt(γ)′θ + et (3)

where the matrix of the data is

xt(γ) = [xt
′I(qt ≤ γ) xt

′I(qt > γ)]

and θ = (α′, β′)′ is the matrix of the coefficients.

4This is a simplification, because it’s really probably that the error could be condition-
ally heteroscedastic. In that case the theory follow being consistent assuming that the
error et is a Martingala difference sequence with respect to the past history of yt.
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Once the TAR model is reduced to equation 3, the parameters to be es-

timated can be clearly seen: the vector of parameters θ, and the threshold

parameter γ. However model 3 is nonlinear and discontinuous. It is pos-

sible to estimate this model via the ordinary least squared using sequential

conditional least squared. For a given value of γ, the LS estimate of θ is:

θ̂(γ) =

(
n∑
t=1

xt(γ)xt(γ)′
)−1( n∑

t=1

xt(γ)yt

)
(4)

the residuals of this model are êt = yt−xt(γ)′θ̂(γ), and the residual variance:

σ̂2
n(γ) =

1

n

n∑
t=1

êt(γ)2 (5)

Finally the resulting estimation of γ it will be that estimated γ̂ minimiz-

ing the value of the equation 5. The model can be made more complex with

the estimation of the autoregressive order p and the search of the threshold

variable qt. Simply it has to repeat the estimation process and changing the

value of p and/or the variable qt, used as threshold, up to minimizing the

value of the equation 5.

It is important to remark that the modeling of the TAR by partitioning,

allows to preserve the stationarity of the series. This contrasts the change-

point models (Markov Switching models) where the regime switch is made

on the basis of time, resulting in a non-stationary process. The problem of

these models is that the traditional tools used to analyze the series are useless

when the series is nonlinear: the autocorrelation function can not be used.

Therefore, as (Tong, 1990) suggests, other instruments based on data-
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exploratory and data-analytic techniques such as various plots, background

information, and nonparametric and semi-parametric techniques have to be

employed. The very powerful feature of the TAR models lies in the easy and

easy-to-use approximation of a more sophisticated nonlinear function of the

piecewise function.

The p, which minimizes the AIC criteria, is chosen to establish the order

of the autoregressive model. Obviously the AIC used in this paper is an AIC

especially modified for the TAR models. Another technical problem of the

TAR model is the asymptotic property of the estimators. But Hansen (1997,

2000) and others demonstrate how the distributions of these estimators can

be known asymptotically via simulations. The test of nonlinearity is the last

aspect to be considered in the estimation of a TAR model. It can be said

that a univocal tool for measuring the nonlinear dependence does not exist

which means that the nonlinear test is the starting instrument to check the

nonlinearity in model estimation. There are many types of this test,and these

can be divided into two categories: the ones which are based on the variance

of a linear model (Portmonteau Test) without specificating alternative models

and, the ones which are based on the specifications of the alternative models.

In this paper the contrast procedure presented by Hansen (1997) is employed.

3 Preliminary Data Analysis

The establishment of the most suitable statistical indicator for the study of

the business cycle of the economy has been a great controversy for many

years. The first studies on the business cycle focused on the analysis of the
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USA economy by using the GDP, as Hamilton (1989) and Potter (1995) did.

More recently Öcal (2000), and Delli Gatti et al. (1998) have employed the

GDP as a variable indicator to study the business cycle in some European

countries. The use of the GDP has always presented several problems of

practical nature: the delay in the data publication and the aggregation of its

different components, presenting diversity in their cyclical behaviour.

The Industrial Production Index represents a good alternative to GDP:

the data are quickly available, it is very sensitive to the cyclical fluctuation

and it has a deep correlation to the GDP. At the same time the industrial sec-

tor plays an important role in the evolution of whole economy, especially the

manufacturing. On the other side, rather than using a single variable, other

authors such as Andreano and Savio (2002), prefer to employ a composite

index to solve the problems of representativeness. Doing this, new problems

like that of the solution of the aggregation method or the identification of

the weights arise. The variable chosen for the study of the nonlinearities in

the Spanish economy is the monthly Industrial Production Index (IPI).

Among the existing indexes, the selected IPI5 includes the whole indus-

try and excludes construction so as not to mix the cyclical fluctuation of this

sector with others. The sample starts on the first month of 1965 and finishes

in the tenth month of 2007. This decision is based on the simplicity and

practice on using the Industrial Production Index. Doing this the problem

of calibrating a coincident indicator is then avoided. Following this solution,

5The data are drawn from the OECD data-bank, especifically from the Main Eco-
nomic Indicator. The year base is 2000 and the original font is the Contabilidad Nacional
Trimestral of Spain.
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it is not necessary to know the different components of the GDP for the

evaluation of its the several cyclical fluctuations. The decision related to the

use of seasonal adjusted or unadjusted data is the second important decision

in this preliminary analysis.

During many years in the literature has been discussed if, at the least

approximately, the seasonal adjustment procedure is a linear data transfor-

mation. In the past, the answer to this important question was positive

and researchers employed extensively seasonal adjusted data. They did not

entertain the hypothesis that the seasonal adjustment could partly produce

nonlinearities in the series. More recently, Ghysels et al. (1996) showed that

this approach needs more caution. In their analysis they found that the stan-

dard seasonal adjustment procedure, X12-ARIMA, is far from being a linear

data-filtering process. Therefore, if the use of linear filter to seasonalize the

data can introduce involuntarily nonlinearities in the series, it may be more

adequate to use unadjusted data, especially in the analysis of the business

cycle. In this work, the use of non-seasonally adjusted data is proposed.This

enables a more adequate evaluation of the superiority of a nonlinear model

in comparison to a linear model.

The series has serious problems of autocorrelation and seasonality, thus a

transformation is needed in order to be able to work with it. With the aim of

avoiding these problems, the most frequently used transformation is the first

difference of the variable. However this solution difficults the appreciation of

the business cycle in the new resulting variable.
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Figure 1: Spanish Industrial Production Index
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Figure 2: Seasonal difference of Spanish Industrial Production Index
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In this paper, instead of the first difference, the seasonally difference

is employed solving the problems of nonstationarity and seasonality. This

facilitates the apreciation of the evolution of the cycle in the new resulting

time series. Following the steps of other authors, ( as Hansen (1997) and

Potter (1995)), the series is multiplied by one hundred before transforming

it. The new variable obtained is a new stationary and seasonally adjusted

variable which represents an annual variation (annual rate of growth), see

the Figures 1, 2.

The Spanish IPI does not present strong problems of asymmetry, the

skewness and the kurtosis coefficients are not so far from the normal param-

eters of time series generated by a linear process (Table 1). However, the

evolution presented by this index is considerably different during the first 10

years with regard to the rest of the sampling, as it can be observed in Figures

1 and 2. In the level and in the seasonal difference it is possible to appreciate

the existence of two tendencies. During the first ten years the rate of growth

is really high, whereas in the rest of the sample, the rate of growth is lower.

If the sample is divided into two subsamples, the asymetries in the series

appear more clearly. In Table 1 the statistics of the series in level and in

the seasonal difference for two subsamples are reported, one for the period

1966-1975, the other for the period 1976-2007. The Spanish IPI means and

Table 1: Property of the Spanish IPI

Min Max Mean Med. Ran. Var S.d Kurt Skew.
IPI 3.097 4.736 4.202 4.275 1.639 0.141 0.375 3.017 -0.897

∆12IPI -0.218 0.188 0.034 0.026 0.407 0.002 0.053 4.277 0.174
The range used is all the sample from 1966M1 to 2007M10 with the variable expressed in logarithms,

Med. = Median, Ran. = Range, S.d. = Standard Deviation, Kurt.= Kurtosis, Skew.= Skewness.
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variances are different in the two subsamples. In the case of the variable

in difference, the second subsample presents a more regular evolution. The

mean, the variance, the skewness and the kurtosis are smaller than in the

first subsample. Consequently, it could be said that some nonlinearities in

the series exist.

As Tong (1990) shows, these features can be well explained in terms of

the so-called regime effect. Those nonstandard features cover: non normal-

ity, asymmetric cycles, bimodal distributions, nonlinear relationship between

lagged variables. Another instrument to analyze a nonlinear series is the

scatter plot of the series with all its lagged values. In Figure 3 all pairs of

autocorrelation are represented. It can be observed that the correlation be-

tween the variable and its lags presents some nonlinear typical aspect. This

is considered a method for checking the existence of autocorrelation, because

in case of nonlinear dependence, the usual autocorrelation function is not

useful. All these elements suggest the existence of nonlinear dynamic in the

series. If this is true, the linear AR model is not able to detect it and to fit it.

Table 2: Property of the IPI in the two sub-samples

Min Max Mean Med. Ran. Var S.d Kurt Skew.
IPI1 3.097 4.219 3.719 3.720 1.122 0.087 0.295 1.778 -0.052

IPI2 3.640 4.7559 4.382 4.391 1.116 0.0484 0.220 3.975 -0.751

∆12IPI1 -0.117 0.189 0.080 0.089 0.407 0.005 0.0682 5.546 -1.183
∆12IPI2 -0.218 0.128 0.019 0.0179 0.245 0.001 0.037 4.282 -0.264
The subsample used to compute the statistics of IPI1 and ∆IPI1 is (1966-1976), as the sub-sample

used to compute the statistics of IPI2 and ∆12IPI2 is (1976-2007).
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4 Threshold Autoregressive model estimated

4.1 Estimation and diagnostic

The first step in the process of building a TAR model is to establish the

order of the autoregressive model p. Following the methodology proposed by

Hansen, first a linear autoregressive model with 12 lags is estimated. Hav-

ing monthly data, it is possible the existence of a dependence between the

variable at t = 0 and its lags (from 1 to 12 ). The dependent variable to

be used is the seasonal difference (of the logs) ∆12 log(IPIt) for the sample

1965-2006 (dropping down the last 10 observations that will be used for eval-

uating the prediction). From now on the dependent variable used is named

yt = ∆12 log(IPIt). After that, a new AR is estimated, dropping down from

the initial AR(12) the lags whose t statistics are smaller than 1. The results

of the estimation are reported in Table 4.

As threshold variable, the same dependent variable is employed. Fol-

lowing the procedure of Hansen (1997), two types of threshold variables are

considered: the first qt = ∆12 log(IPIt−d) as a lagged value of the seasonal

difference, the second qt = log(IPIt) − log(IPIt−d) as a difference of order

d. For d = 1, · · · , 12 a TAR model with the same autoregressive parameters

specified for the AR model (1,2,3,6,7,12) is estimated. The sum squared error

(SSE) for all the models estimated is reported in the Table 5. The value of

d minimizing the SSE is d = 0 with qt = ∆12 log(IPIt) as threshold variable.

This means that the change between the two regimes is simply instantaneous

and does not depend on a delay parameter. Now that the parameter of delay

(d = 0) is known, a TAR model dropping down the lags 4, 5, 8, 9, 10, 11 is
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estimated. The TAR model estimated is:

yt =



(−0.0045 + 0.2063yt−1 + 0.3130yt−2 − 0.0137yt−3

+0.0398yt−6 + 0.1178yt−7 − 0.1922yt−12) + êt, if I(qt ≤ 0.028)

(0.0328 + 0.2343yt−1 + 0.1987yt−2 + 0.1439yt−3

+0.0741yt−6 + 0.1556yt−7 − 0.2047yt−12) + êt, if I(qt > 0.028)

(6)

The estimations of the two regimes and the threshold variable are re-

ported in Table 6. The threshold estimated is γ̂ = 0.028167. This splits the

sample into two parts, with 253 observations for the lower regime, and 227

observations for the upper regime.

The test of linearity LR∗n(γ) proposed by Hansen (1997) refuses the hy-

pothesis of linearity of the model at 1% of signification. This means that for

the Spanish IPI, in the case of a univariate analysis, it is more appropiate to

use a nonlinear model than a linear one. The other diagnostic tests reported

in Table 6 confirm this sentence. In the first part of Table 6, the sum of

squared errors, the residual variance an the joint R-squared are calculated

for the complete TAR model and in the other two tables these parameters

are calculated for each regime. It is possible to state some conclusions com-

paring the statistcs of the whole TAR model reported in Table 6 with that

of Table 4.

The use of a TAR model drops down the variance and the sum of squared

errors, being the R-squared of the TAR model very high at the same time. So

these tests confirm the good fitting of the Spanish IPI with the TAR model.

The estimated coefficient, the variances of the parameters, the t-statistics
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and the calculated 0.99 confidence intervals, as proposed by Hansen in 1997,

are reported in the middle and in the bottom of the Table 6.

4.2 Some results

The first preliminary conclusion arisen from the observation of the estimated

TAR model is the reproduction of th AR model in its upper regime. The

structure of the coefficients is very similar, the sign of the parameters is ex-

actly the same: only lag 12 is negative. This suggests that by this way the

linear AR does not seem to have a mechanism strong enough to change the

evolution of the series. The structure of the TAR model includes the exis-

tence of another regime that can explain more appropriately the evolution

of the IPI. The lower regime presents three negative coefficients. Indeed this

means that when qt < 0.028 there is a force that pushes the series to stay in

a low growing state. So the simple AR model does not pick up the dynamics

produced by the lower regime. It seems that more importance is given to the

observation where qt > 0.028, which is more frequent in the first part of the

sample.

Following Hansen (1997), Figure 5 represents the series in a scatterplot,

where two regimes can be clearly distinguished. During the first ten years

the upper regime is dominant, wheareas the rest of the sample presents the

dominance of the lower regime, only interrupted for short periods in 1985-

1989, 1994-1995 and 1997-2000. In this way, it can be concluded that after

the high rate of growth during 1965-1975, the Spanish economy had a large

period of low growth between 1976-1985. This may be seen as a trivial state-

ment, but the importance here is that the flexibility of the TAR model is

16



able to represent and fit this evolution of the time series much adequately

than a linear AR model.

The last step in this analysis is the forecast of the estimated models.

For this purpose the last ten observations of 2007 are employed and the

prediction of the series in levels as well as in differences is done. From the

results obtained, shown in Table 3, it is evident that the TAR model has a

better capacity to predict the IPI. In this line, and in contract with other

literature works ((Clements and Smith, 1997)), the nonlinear model predicts

better than the linear AR. In levels and in differences the TAR model has a

lower RMSE, MAE, MAPE6 than the AR model.

Table 3: Comparison of predictions

TAR AR
y ∆sy y ∆sy

RMSE 0.0199 0.0183 0.0230 0.0207
MAE 0.0176 0.0162 0.0201 0.0183
MAPE 1,6296 68,218 1,8501 126,14

∆s: seasonal difference

6RMSE =
√(

( 1
h+1 )

∑T+h
t=T+1(ŷt − yt)2

)
, MAE = ( 1

h+1 )
∑T+h

t=T+1 |ŷt − yt|, MAPE =

( 1
h+1 )

∑T+h
t=T+1

∣∣∣ ŷt−yt

yt

∣∣∣
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5 Conclusions

The linear time series models have dominated the macroeconomic analysis

for many years, being the only approach available. With time it has been

observed that the empirical evidence has demonstrated the limitations of the

linear analysis to explain the time series with nonlinear features. In this

work, the nonlinear futures of the Spanish Industrial Production Index are

analyzed in order to point out how the linear methods can hide an interest-

ing economic structure. This paper uses the Threshold Autoregressive model

proposed by Hansen (1997) in order to estimate and test the threshold pa-

rameters and to construct asymptotic confidence intervals for the parameters.

This model is employed to improve the confidence intervals for the param-

eters as well as solving the problem of nuisance parameters in the nonlinear

test of the model. By doing this it is possible to make inference with the

estimated model. The analysis is performed at a univariate level so as to

compare the improvement that a nonlinear model produces with regard to a

linear model, the latter being a simple ARIMA model. These results outline

the presence of a complex dynamic structure that the linear model can not

capture, and the nonlinearity test refuses the hypothesis of linearity. Overall

the estimated Threshold Autoregressive model represents better the evolu-

tion of the Spanish IPI and its asymmetry, being capable of outlining two

states of the Spanish economy.

The analysis on the Spanish IPI shows the existence of two different dy-

namics: one during a high growth phase and the other during a low growth
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phase. Additionally, it is concluded that the TAR model gives better fore-

casting accuracy than that given by the ARIMA model. This result stresses

the importance of using nonlinear models for the Spanish economy, moreover

the need of adopting a new approach which is based on this kind of models

to study its business cycle.
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6 Appendix

Table 4: Linear AR model

Variable Estimate St Error t-statistic

Constant 0.006338 0.001822 3.478542
yt−1 0.335545 0.069155 4.852093
yt−2 0.323148 0.067345 4.798407
yt−3 0.103607 0.064889 1.596687
yt−6 0.121589 0.048885 2.487218
yt−7 0.152578 0.063900 2.387684
yt−12 -0.235781 0.055302 -4.263494

Obs. = 480, DF. = 473, SSE = 0.405500,
σε

2 = 0.000857, R2 = 0.687907

Table 5: Selection of the parameter of delay d

qt = ∆12 log(IPIt−d)
d = 0 1 2 3 4 5 6 7 8 9 10 11 12

SSE 0.27 0.38 0.36 0.37 0.37 0.36 0.37 0.36 0.37 0.38 0.37 0.39 0.38
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

qt = log(IPIt)− log(IPIt−d)
d = 2 3 4 5 6 7 8 9 10 11 12

SSE 0.385 0.375 0.376 0.385 0.382 0.386 0.377 0.386 0.387 0.388 0.380
p-value 0.000 0.000 0.000 0.008 0.000 0.006 0.000 0.007 0.005 0.005 0.000



Table 6: TAR model estimated

γ = yt γ̂ = 0.028167 .99C.I. = [0.027433, 0.040157]

SSE = 0.272670, σ2
ε = 0.000585, R2 = 0.790140, LR∗

n(γ)(p− value) = 0.000719

qt <= 0.028167
Variable intercept yt−1 yt−2 yt−3 yt−6 yt−7 yt−12

α -0.0045 0.2063 0.3130 -0.0137 0.0398 0.1178 -0.1922
s.e 0.0017 0.0893 0.0888 0.0850 0.0598 0.0867 0.0778
t. -2.6465 2.3086 3.5242 -0.1610 0.6657 1.3585 -2.4699
low 95% -0.0090 -0.0242 0.0838 -0.2331 -0.1144 -0.1058 -0.3929
up 95% -0.0001 0.4368 0.5422 0.2057 0.1940 0.3414 0.0086

Obs. = 253, DF = 246, SSE = 0.143660, σ2 = 0.000584, R2 = 0.67651

qt > 0.028167
Variable intercept yt−1 yt−2 yt−3 yt−6 yt−7 yt−12

α 0.0328 0.2343 0.1987 0.14399 0.0741 0.1556 -0.2047
s.e 0.0025 0.0611 0.0648 0.0549 0.0486 0.0613 0.0433
t. 13.3530 3.8360 3.0670 2.6254 1.5232 2.5394 -4.7305
low 95% 0.0265 0.0767 0.0316 0.0025 -0.0514 -0.0025 -0.31632
up 95% 0.0391 0.3919 0.3659 0.2855 0.1995 0.3137 -0.0931

Obs. = 227, DF = 220, SSE = 0.129010, σ2 = 0.000586, R2 = 0.602057
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Figure 3: Spanish IPI vs its lags
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Figure 4: Confidence interval Construction for the Threshold
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Figure 5: Classification by Regimes in the levels
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