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Abstract

This paper designs a Sequential Monte Carlo (SMC) algorithm for estimation of

Bayesian semi-parametric Stochastic Volatility model for financial data. In particu-

lar, it makes use of one of the most recent particle filters called Particle Learning (PL).

SMC methods are especially well suited for state-space models and can be seen as a

cost-efficient alternative to MCMC, since they allow for online type inference. The

posterior distributions are updated as new data is observed, which is prohibitively

costly using MCMC. Also, PL allows for consistent online model comparison using

sequential predictive log Bayes factors. A simulated data is used in order to com-

pare the posterior outputs for the PL and MCMC schemes, which are shown to be

almost identical. Finally, a short real data application is included.
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1 Introduction

Understanding, modeling and predicting stylized features of financial returns has been

extensively researched for more than 30 years and interest in the subject is far from

decreasing. Meanwhile mean-variance framework has been of major interest, it is jus-

tifiable only for Normally distributed returns. There is overwhelming evidence in the

literature that the distribution of the financial returns is far from Normal, in the sense

that it exhibits fat tails and occasional asymmetry. Therefore, apart from the mean and

variance modeling one also has to consider departures from Normality by allowing for

skewness and excess kurtosis via more flexible distributional assumptions for the inno-

vations of the returns.

Modeling conditional mean of the returns is a very challenging task, since they are

always very close to zero and exhibit very low levels of autocorrelation. The volatility

of the returns, on the other hand, usually exhibits slow decaying autocorrelation func-

tion, i.e. high persistence, which can be modeled via auto-regressive process. The two

most popular approaches to model volatility are based on the Autoregressive Condi-

tional Heteroscedasticity (ARCH) type models, first introduced by Engle (1982), and the

Stochastic volatility (SV) type models, first introduced by Taylor (1982). There is evi-

dence in the literature that SV models provide more flexibility than Generalized ARCH

(GARCH, Bollerslev, 1986) specifications, see e.g. Broto and Ruiz (2004). Therefore, in

this work we consider the SV model for the volatilities.

As for the distribution of the error term of the returns, the Normal distribution

was considered by Taylor (1986, 1994), Jacquier et al. (1994), Kim et al. (1998), among

many others. However, as mentioned above, financial returns depart from Normality

since they exhibit fat fails and occasional asymmetry. There has been a multitude of

papers considering all kinds of non-Normal distributions. For example, the Student-t

distribution was employed by Harvey et al. (1994), Gallant et al. (1997), Sandmann and

Koopman (1998), Chib et al. (2002), Jacquier et al. (2004), Nakajima and Omori (2009),

the Normal-Inverse Gaussian by Barndorff-Nielsen (1997), the Mixture of Normals by

Mahieu and Schotman (1998), and the Generalized error distribution by Liesenfeld and

Richard (2005), among many others.
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Another alternative is to abandon parametric assumptions for the distribution of the

error term of the returns altogether and consider a semi-parametric SV model, where

the distribution of the returns is modeled non-parametrically, and, at the same time,

the parametric discrete representation of the SV model is conserved. The Bayesian non-

parametric approach for SV models is quite a new field of research, with growing pop-

ularity due to its flexibility and superior performance, see Jensen (2004), Jensen and

Maheu (2010, 2014) and Delatola and Griffin (2011, 2013). In these works it is assumed

that the distribution of the returns follows an infinite mixture of Normals via Dirichlet

Process Mixture (DPM) models (see Ferguson, 1983 and Lo, 1984, among others). The

infinite mixture of Normals can model other distributions, frequently used in financial

time series context, see e.g. Tokdar (2006) and Mencı́a and Sentana (2009), because of its

universal approximation property (Titterington et al., 1985).

The MCMC estimation approach for SV models is the usual methodology since the

seminal work by Jacquier et al. (1994), where Bayesian inference for standard SV mod-

els was firstly developed. For a survey on Bayesian estimation of time-varying volatility

models see Virbickaitė et al. (2015b). However, MCMC methods in general are computa-

tionally demanding for high-frequency data and ’inherently non-sequential’ (Lopes and

Polson, 2010). Alternatively, one can rely on Sequential Monte Carlo (SMC) methods,

also known as particle filters, that allow for online type inference by updating the pos-

terior distribution as the new data is observed. Stochastic volatility (parametric or semi-

parametric) models are state-space models, naturally suggesting SMC scheme. More-

over, model considered in this paper belongs to such a class, that have the availability

of sufficient statistics of the parameters. This naturally suggests using a filter that in-

stead of tracking a high-dimensional vector of the parameters tracks a low-dimensional

set of sufficient statistics that can be recursively updated. The use of sufficient statistics

has been shown to increase the efficiency of the algorithm by reducing the variance of

sampling weights, see Carvalho et al. (2010a).

In general, particle filters provide a simulation based approach where a set of par-

ticles represent the posterior density. For instance, consider the following state-space
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model, where xt are latent states and Θ are static parameters:

rt|xt, Θ ∼ p(rt|xt, Θ),

xt|xt−1, Θ ∼ p(xt|xt−1, Θ),

for t = 1, . . . , T, with initial probability density p(x0|Θ) and prior p(Θ). Each particle

has an associated weight that is proportional to the predictive p(rt|xt, Θ). The sequential

state filtering and parameter learning problem is solved by a sequence of joint posterior

distributions p(xt, Θ|rt), where rt = (r1, . . . , rt). Assume for the time being that Θ is

known, which leaves us with a pure filtering problem. Gordon et al. (1993) and Pitt and

Shephard (1999) propose bootstrap and auxiliary particle filters, respectively, which are

among the most popular ones. However, when Θ is unknown and also needs to be

sequentially estimated, the problem becomes more difficult. The approach of directly

introducing and resampling Θ breaks down in a few steps, since all the particles col-

lapse into a single point. In order to delay particle degeneracy, Gordon et al. (1993),

and later Liu and West (2001), consider artificial evolution for the parameters. On the

other hand, Storvik (2002) and Carvalho et al. (2010a) rely on a low-dimensional set of

sufficient statistics, instead of the parameters, to be tracked in time. For discussions and

illustrations of some of the particle methods or reviews of particle methods in general,

see Johansen and Doucet (2008), Kantas et al. (2009), Douc et al. (2009), Lopes and Tsay

(2011), Lopes et al. (2011) together with Chopin et al. (2011) for a lively discussion, Lopes

and Carvalho (2013) and Rios and Lopes (2013), among many others. Even if particle

filters are known to suffer from a fundamental problem called particle degeneracy, i.e.,

an ever-decreasing set of atoms in the particle approximation of the density of interest

(see Section 2.5), the online property of particle filters is definitively an advantage over

MCMC.

Among all available Sequential Monte Carlo methods, in this paper we make use of

the particle learning (PL) approach, which is a particle based method, firstly introduced

by Carvalho et al. (2010a). Surely, alternative particle filters are in order. Nevertheless,

comparison of SMC methods in this setting is out of the scope of this paper. One can

find extensive empirical results for comparisons of a variety competing filters in Car-
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valho et al. (2010a), Lopes and Tsay (2011) and Rios and Lopes (2013) in more general

settings. PL incorporates sequential parameter learning, state filtering and smoothing,

thus providing an online estimation alternative to MCMC/FFBS methods. For PL com-

parison with MCMC see Carvalho et al. (2010a), Lopes and Polson (2010), among others.

An essential feature of PL is the presence of conditional sufficient statistics for the pa-

rameters to be tracked in time. It also makes model comparison easy, since at each step

we have the predictive likelihood as a by-product.

The main contribution of the paper is that we design a PL algorithm for a SV model

with DPM innovations, referred to as a semi-parametric model (SPM), which is the same

as in Delatola and Griffin (2011). We estimate the simulated data via PL and MCMC in

order to illustrate that the produced posteriors are almost identical at any given data

point. PL method provides the advantage of easily incorporating the information from

the new observation, while MCMC requires to re-run the algorithm again. Additionally,

PL produces predictive likelihoods for each data point without any additional costs,

which allows for sequential model comparison via log predictive Bayes factors. Finally

we estimate real data via PL using the SPM and fully parametric model with Normal in-

novations, referred to as PM (following the nomenclature of Delatola and Griffin 2011),

and perform sequential model comparison in order to illustrate the attractiveness of

SMC approach.

Important to notice, that the proposed efficient SMC scheme for this type of models

does not come without a cost. Apart from the limitations of particle filters in general,

which are outlined in Section 2.6, there is an important shortcoming of PL algorithm for

the specific class of models considered in this paper. In particular, in order to design a

fully-adapted PL algorithm, the returns have to be transformed by applying a log-square

transformation. This transformation masks possible skewness of the distribution of the

returns.1 As acknowledged in Delatola and Griffin (2011), this is a strong assumption,

however, they refer to the work of Jensen and Maheu (2010) and argue that the authors

found little evidence of skewed returns and showed that a symmetric model exhibits

better out of sample performance as compared to an asymmetric one.

The paper is structured as follows. Section 2 presents the linearized SV model with

1We would like to thank the Referee for pointing this out.
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non-parametric errors and designs a PL algorithm for this model. It also includes a dis-

cussion on the limitations of the particle methods in general. Then, Section 3 presents

simulated data exercise and comparison with the MCMC estimation output. Section 4

compares the performance of the parametric and semiparametric models using real

data. Finally, Section 5 concludes.

2 SV-DPM Model

In this section we briefly review a commonly used version of the standard stochastic

volatility model with Normal errors. We then drop the Normality hypothesis and in-

troduce a novel particle learning scheme to perform sequential Bayesian learning in the

class of semi-parametric SV models. The innovation distribution is assumed to follow

an infinite mixture of Gaussians via Dirichlet Process Mixture models, giving rise to the

SPM. We show the differences in the computational aspects between PL and MCMC.

Meanwhile MCMC is a gold standard in this type of models, PL has the advantage of

producing online inference and, as a by product, online model comparison/selection

statistics.

2.1 Normal errors

The standard SV model looks as follows:

yt = exp {h∗t /2} vt, (1)

h∗t = α + β(h∗t−1 − α) + τηt, t = 1, . . . , T, (2)

where |β| < 1 for the stationarity of the volatilities; vt and ηt are uncorrelated error

terms, such that ηt ∼ N (0, 1). The distribution of the vt with zero mean and unit vari-

ance takes many different forms in the existing literature: from a standard Normal, to

heavy-tailed Student-t and others (see Kim et al., 1998, Chib et al., 2002, Mahieu and

Schotman, 1998, Liesenfeld and Richard, 2005, for example).

6



Kim et al. (1998) proposed a linearization of the standard SV model by defining rt =

log(y2
t + cO) and ε∗t = log v2

t , resulting into the following dynamic linear model:

rt = h∗t + ε∗t , where ε∗t ∼ F , (3)

h∗t = α + β(h∗t−1 − α) + τηt, where ηt ∼ N (0, 1). (4)

Observe that the distribution F is a log χ2
1 if vt is Normally distributed. Kim et al.

(1998) and Omori et al. (2007) use carefully tuned finite mixtures of Normals to approx-

imate the log χ2
1 distribution and use a data augmentation argument to propose fast

MCMC schemes that jointly sample {h∗1 , . . . , h∗T} based on the well-known forward fil-

tering, backward sampling (FFBS) algorithm of Carter and Kohn (1994) and Frühwirth-

Schnatter (1994). Moreover, cO is an offset parameter that is needed in order to avoid the

logarithm to be undefined in case zero returns. Delatola and Griffin (2011) have tried

several different values for cO and presented their real data application with cO = 10−4,

meanwhile Jensen (2004) has used the value of cO = 0.0005. Therefore, in this paper we

fix cO = 0.0003 for all simulated and real data applications.

However, the recent literature is abundant in showing that the distribution of vt has

heavier tails than the Normal distribution, rendering the above approximations use-

less. Below we introduce the simple linearized SV model with non-parametric errors to

model the unknown return distribution.

Another important issue concerns the moments of the distribution of ε∗t . Even though

the original errors vt are generated by a process with zero mean and unit variance, the

resulting moments of ε∗t can vary greatly, depending on the distribution of vt. For

example, if vt ∼ N (0, 1), then E[ε∗t ] = −1.272, V[ε∗t ] = 4.946, S[ε∗t ] = −1.539 and

K[ε∗t ] = 7.015, where E[·], V[·], S[·] and K[·] denote mean, variance, skewness and kur-

tosis, respectively. On the other hand, if vt ∼ ST (7), scaled in such a way that E[vt] = 0

and V[vt] = 1, then E[ε∗t ] = −1.428, V[ε∗t ] = 5.218, S[ε∗t ] = −1.404 and K[ε∗t ] = 6.583.

However, Student-t and Normal are not the only possible distributions for the errors.

There is an infinite number of possibilities for the distribution of the error term, whose

moments are impossible to ’map’ backwards in order to recover the true error distri-

bution. Nonetheless, Delatola and Griffin (2011) propose an approximate procedure in
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order to recover the underlying true distribution.

2.2 Non-Normal errors

We do not specify a parametric model for the error density, but instead, we assume

a Dirichlet Process Mixture prior, firstly introduced by Lo (1984). DPM models have

been widely used for modeling time-varying volatilities, see Jensen (2004), Jensen and

Maheu (2010, 2013, 2014), Delatola and Griffin (2011, 2013), Kalli et al. (2013), Ausı́n et al.

(2014) and Virbickaitė et al. (2015a). This type of approach is known as time-invariant

(independent) DPM.

Delatola and Griffin (2011, 2013), for example, propose to approximate the log-square

of the unknown return distribution F as an infinite mixture of Normals by relying on

DPM models. The SPM presented in this section is of the same spirit as the model in

Delatola and Griffin (2011). As noted by the authors, since the mean of the disturbance

ε∗t is not fixed and is not known, there might arise some identification issues. Therefore,

the mean of the volatility process in (4) can be subsumed into ε∗t , leading to the following

reparametrized model:

rt = ht + εt, where εt ∼ F , (5)

ht = β(ht−1) + τηt, where ηt ∼ N (0, 1), (6)

such that ht = h∗t − α and εt = ε∗t + α. Here the log volatility process has the uncon-

ditional mean equal to zero.

As seen in Escobar and West (1995), the DPM model has the following density func-

tion:

f (εt; G) =
∫

k(εt; θt)dG(θt),

where k is some density kernel with parameters θt and the mixing distribution G has

a DP prior, denoted here by G ∼ DP(c, G0(θ; $)). Each observation εt comes from a

different kernel density with some parameters θt, following the mixing distribution G.

The parameter c is called the concentration parameter and G0(θ; $) is called the base
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distribution that depends on certain hyperparameters $. The concentration parameter c

can be interpreted as the prior belief about the number of clusters in the mixture. Small

values of c assume a priori an infinite mixture model with a small number of components

with large weights. On the contrary, large values of c assume a priori an infinite mixture

model with all the weights being very small. c is also called a precision parameter and

indicates how close G is to the base distribution G0, where larger c indicates that G is

closer to G0.

Gaussian kernel and conjugate base prior. A rather standard approach is to consider

a Gaussian kernel density, εt ∼ N (µt, σ2
t ), and follow the procedure outlined in Escobar

and West (1995) and put a prior on the mixing mean and the variance. Alternatively, we

rely on an approach proposed by Griffin (2010) and Delatola and Griffin (2011):

εt|µt ∼ N (µt, ασ2), t = 1, . . . , T,

µt ∼ G,

G ∼ DP(c, G0),

G0 ∼ N (µ0, (1− α)σ2).

Here µ0 is the overall location parameter and mixing is done over µj, meanwhile σ2 is

the overall scale and is constant. Moreover, the uncertainty associated with µj can be

integrated out and the prior predictive for εt is just a single Normal N (µ0, σ2). Param-

eter α is a smoothness parameter and is fixed to 0.05 throughout the paper. Delatola

and Griffin (2011) have also considered a different value of α = 0.01; alternatively, α

can also be estimated with the rest of the model parameters, see Griffin (2010) for de-

tails. The concentration parameter c is set to be equal to one, as seen in Carvalho et al.

(2010b), however, it can be estimated together with the rest of model parameters. One

can specify some informative priors for µ0 and σ2, however, following Delatola and

Griffin (2011), we allow for completely uninformative priors.

Define Φ =
(

β, τ2) as the set of parameters associated with the parametric part of

the model, Ω = {(µ0, µ1, . . . , σ2)} as a set of parameters associated with the distribution

of the error term, and Θ = (Φ, Ω) as a complete set of all model parameters. Therefore,
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using a Polya urn representation of DPM, the model in (5) and (6) can be rewritten as

follows:

rt|ht, Θ ∼ 1
c + t− 1

L?
t−1

∑
j=0

nt−1,jN (rt; µj + ht, ασ2
j ), (7)

ht|ht−1, Θ ∼ N (ht; βht−1, τ2), (8)

where nt,j is a number of observations assigned to jth component at time t, n0 = c,

σ2
j = σ2 ∀j > 0, σ2

0 = σ2/α and L?
t is a number of non-empty components in the mix-

ture at time t, i.e. L?
t is not fixed a priori and grows if new components are observed.

Given this missing information, the mixture becomes finite, where the maximum num-

ber of components theoretically is limited by the number of observations. In practice,

data tends to cluster, meaning that some observations come from the same component,

therefore L?
t � t.

2.3 MCMC for SPM

The standard Bayesian estimation of SV models, parametric or semi-parametric, relies

on MCMC methods, which, however, can be costly, because, additionally to the pa-

rameter estimation, they have to consider a sampler for latent volatilities. One notable

exception is a work by Jensen (2004), who proposes a highly efficient MCMC sampler

for a long memory semiparametric SV model by making use of the SV model’s wavelet

representation and near-independence of the wavelet coefficients.

Jensen and Maheu (2010) construct an MCMC scheme for their proposed SV-DPM

model, where latent volatilities are sampled via random length block sampler, which

helps to reduce correlation between draws. The authors found that the semi-parametric

SV model is more robust to non-Normal data and provides better forecasts. In another

paper, Jensen and Maheu (2014) consider an asymmetric SV-DPM model. The authors

extend their previous semi-parametric sampler to a bivariate setting, where the inno-

vations of the returns and volatilities are modeled jointly via infinite scale mixture of

bivariate Normals.

Meanwhile, Delatola and Griffin (2011) use a linearized version of the SV model.
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Conditional on knowing which mixture component the data belongs to, the linearized

SV model is just a Normal Dynamic Linear Model (NDLM) and the latent volatilities

are updated by FFBS (see the discussion at the end of Section 2.1). The remainder of the

model parameters are sampled via an extension of Gibbs sampler, called hybrid Gibbs

sampler. In their subsequent paper, Delatola and Griffin (2013) consider an asymmetric

SV model. Same as before, they make use of the linearization and update the latent

log volatilities via FFBS and the other parameters via Metropolis-Hastings. All above

MCMC schemes are costly in the context of SV models for high-frequency data for at

least three reasons: (1) the MCMC sampler has to include a filter for latent volatilities,

(2) the sampler has to be re-run each time a new observation arrives, and (3) sequential

consistent model comparison is nearly impossible due to computational burden.

2.4 PL for the SPM

In this section we present the algorithm to perform PL estimation for a SV model with

non-parametric errors. PL, as mentioned before, is one of several particle filters that

consider sequential state filtering and parameter learning. PL, which was firstly intro-

duced by Carvalho et al. (2010a), allows for sequential filtering, smoothing and parame-

ter learning by including state-sufficient statistics in a set of particles. The Appendix I at

the end of this paper includes a brief description of the main idea behind PL. For a more

detailed explanation of PL with illustrations refer to Carvalho et al. (2010a) and Lopes

et al. (2011), among others.

The priors for model parameters are chosen to be conditionally conjugate: h0 ∼
N (c0, C0), τ2 ∼ IG(b0/2, b0τ2

0 /2) and β ∼ T N (−1,1)(mβ, Vβ). Here T N (a,b) represents

Normal distribution, truncated at a and b, while c0, C0, b0, b0τ2
0 , mβ, and Vβ are hyper-

parameters. Then, a set of sufficient statistics St contains all updated hyper-parameters,

necessary for the parameter simulation, as well as filtered state variables, which are of

two kinds: the latent log volatilities ht and the indicator variable kt, which tells us to

which mixture component the error data point belongs to. The object we call particle

at time t thus will contain St and corresponding parameters, simulated from the hyper-

parameters in St. At each time t we have a collection of N particles. When this set of
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N particles passes from t to t + 1, some of the particles disappear, some are repeated

(sampling with replacement, corresponds to the Resampling step defined below) and

then modified (Sampling and Propagating steps).

In order to initiate the algorithm, we need to have the initial set of sufficient statis-

tics S0 and initial parameter values. The set S0 consists of: initial {h(i)0 }N
i=1, that has

been simulated from its prior, initial overall location {µ(i)
0 }N

i=1, which is set to -1.272 for

all particles, {σ2(i)}N
i=1, which is set to 4.946. These specific values correspond to the

fist two moments of the log χ2 distribution, which would correspond to Normally dis-

tributed returns. The rest of the initial hyper-parameters {b(i)0 }N
i=1, {b0τ

2(i)
0 }N

i=1, . . . are

all the same across all particles at t = 0.

For t = 1 . . . , T and for each particle (i) the algorithm iterates through three steps (the

derivations of the posterior distributions are rather straightforward and very similar to

the ones available in Griffin 2010 and Delatola and Griffin 2011):

1. Resampling.

Resample the particles from the previous period t− 1 with weights

w ∝
1

c + t− 1

L?
t−1

∑
j=0

nj fN(rt; βht−1 + µj, τ2 + ασ2
j ),

that are proportional to the predictive density of the returns (n0 = c, σ2
j = σ2 ∀j >

0, σ2
0 = σ2/α). The components of Θ = (β, τ2, µ1, . . . , µL?

t−1
, µ0, σ2) have been sim-

ulated at the end of the previous period. The resampled particles are denoted by a

tilde above the particle, as in Θ̃.

2. Sampling.

(a) Sample new log volatilities ht from

ht|h̃t−1, Θ̃, rt ∼ N (ht; mh, Vh),

where, Vh = Aσ̃2, mh = A(rt − µ̃0) + (1− A)β̃h̃t−1, and A = τ̃2/(τ̃2 + σ̃2).

(b) Sample new indicators kt from {1, . . . , L?
t−1 + 1}, with weights proportional
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to

ñj fN(rt; β̃h̃t−1 + µ̃j, τ̃2 + ασ̃2
j ), j = 1, . . . , L?

t−1 + 1,

where ñL?
t−1+1 = c, σ̃2

j = σ̃2 ∀j ≤ L?
t−1 and σ2

L?
t−1+1 = σ2/α. If kt ≤ L?

t−1,

nkt = ñkt + 1 and L?
t = L?

t−1, otherwise, L?
t = L?

t−1 + 1 and nkt = 1.

3. Propagating sufficient statistics and learning Θ.

(c.1) Sample τ2 from IG(τ2; b?0/2, b?0τ2?
0 /2), where

b?0 = b̃0 + 1 and b?0τ2?
0 = b̃0τ̃2

0 + (ht − β̃h̃t−1)
2.

(c.2) Sample β from T N (−1,1)(β; m?
β, V?

β ), where

m?
β =

m̃βτ2 + Ṽβh̃t−1ht

1 + Ṽβh̃2
t−1

and V?
β =

Ṽβτ2

τ2 + Ṽβh̃2
t−1

.

(c.3) Sample µkt from N (µkt ; m, Vσ̃2), where

m = V
(

µ̃0

(1− α)
+

skt

α

)
and V =

α(1− α)

α + (1− α) · t ,

such that skt = s̃j=kt + (rt − ht).

(c.4) Sample µ0 from N (α; m, V), where

m =
L?

t

∑
j=1

µj and V =
σ̃2(1− α)

L?
t

.

(c.5) Sample σ2 from IG(σ2; a, b), where

a =
t + L?

t
2

and b =
lkt

2α
+

∑
L?

t
j=1(µj − µ0)

2

2(1− α)
,

such that lkt = l̃j=kt(rt − ht − µkt)
2.
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2.5 Limitations of particle filters

Particle filters, PL included, are known to suffer from a problem called particle degen-

eracy: an ever-decreasing set of atoms in the particle approximation of the density of

interest. As noted by Chopin et al. (2011), increasing the number of observations will

lead to degenerating paths, unless the number of particles is being increased simulta-

neously. This has to be monitored carefully for the chosen filter and can be seen as

a trade-off between the sequential nature of the algorithm and stability of MCMC for

very large samples. Therefore, the a priori consideration of the sample size of interest di-

rectly influences the choice of number of particles in order not to reach the stage where

particles start to degenerate.

Although the development of particle filters is not that new, it is a very active field

of research. The ever going quest to avoid or at least postpone particle degeneracy has

lead to Gordon et al. (1993) and Liu and West (2001) introducing artificial evolution

in the parameters. Another strategy is to use resample – propagate strategy rather than

propagate – resample, as seen in Carvalho et al. (2010a), Lopes and Tsay (2011). Finally,

the use of sufficient statistics produces lower MC error than other filters (given the same

number of particles), which in turn implies that filters, making use of sufficient statistics

– such as PL or Storvik (2002), can reach the same accuracy with a smaller number of

particles as other filters. This leaves more room for increase in a number of particles to

accommodate desired time-horizon before the particles start vanishing.

Finally, if the interest is not online type inference, MCMC is still a gold standard in

the area. Recently other approaches, such as Particle MCMC, that combine MCMC and

particle filters, have been emerging, see Andrieu et al. (2010) and Pitt et al. (2012), among

others.

3 Simulation exercise and comparison with MCMC

We perform a simulation exercise based on synthetic data to illustrate computational

aspects of MCMC and PL approaches. A data set of length T = 500 is simulated from

the model in (1)-(2) with α = 0, β = 0.97, τ2 = 0.0225, where vt is distributed as a
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standard Normal. We estimate the SPM using the simulated data with PL and MCMC

schemes. The priors for the unknown parameters are the same for MCMC and PL and

are given by

β ∼ N (0.95, 0.1) and τ2 ∼ IG(10/2, 0.1/2).

Also, initial values for µ0 and σ2 are set the same for both algorithms to match the

first two moments of the log χ2 distribution. PL is run for 100k particles, meanwhile

the MCMC is run for 100000 iterations, keeping every 10th. MCMC results are obtained

via Matlab code of Delatola and Griffin (2011), which is available on Jim Griffin’s web-

site2. We have modified the code accordingly, to exactly match our model specification.

In particular, the concentration parameter is set to be c = 1, the probability of zero re-

turns is always set to be equal to zero and we do not switch between two alternative

reparametrizations, as described in Delatola and Griffin (2011). Also, the draws for pa-

rameter β are obtained via Gibbs rather than MH step, as in the original code.

For illustrative purposes we also estimate a fully parametric model, where the error

term is assumed to be Normally distributed. The log χ2 distribution is approximated via

carefully tuned mixture of Normals, as seen in Kim et al. (1998). Such approximation

allows us to implement the fully adapted filter and allows us to illustrate one of the

advantages of the PL algorithm: sequential predictive model performance. In this case

we know the underlying DGP, therefore, the sequential predictive Bayes factors should

prefer the fully parametric model purely due to much smaller parameter space.

We report estimation results at 5 points of the sample, in particular, at observations

t = 100, 200, 300, 400, 500. For PL, the algorithm has to be run only once, meanwhile for

MCMC it had to be run 5 times. We present the PL results for 4 independent runs in

order to get some idea about the Monte Carlo error (the codes were run on a standard

desktop computer with four cores, this way all four runs could be carried out in parallel).

The smaller the number of particles, the more variability is observed across runs, see

Carvalho et al. (2010a) for example.

Figure 1 plots the posterior distributions for the model parameters associated with

2http://www.kent.ac.uk/smsas/personal/jeg28/index.htm
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the non-parametric part - µ0 and σ2, and the parameters, governing the volatility pro-

cess - β and τ2 at time T = 100. The four grey lines correspond to the four independent

PL runs, meanwhile the dotted black line draws the MCMC produced posterior distri-

butions. As seen, at time T = 100 all posterior distributions are nearly identical. Similar

plots can be drawn for each time point t. In order to save space, for the rest of time

points instead of drawing all posterior distributions, we plot the PL median, 2.5 and

97.5 percentile paths and the corresponding MCMC medians and 95% credible inter-

vals, see Figure 2. As seen from the plots, the posterior distributions seem very similar

for all data points. Instead of the medians and credible bounds for the MCMC only at

specific time points, one could also draw the exact paths for all ts, however, this would

mean that MCMC algorithm would have to be re-run 500 times.

[Figure 1 about here.]

[Figure 2 about here.]

Next, Figure 3 draws the posterior median, 2.5 and 97.5 percentile paths for PL and

corresponding MCMC medians with 95% credible intervals at the selected time cuts for

the filtered log volatilities. Although for the MCMC we have the entire path of volatilities

available, it is important to distinguish that these are smoothed paths, therefore, are

not comparable with the only filtered PL paths. If one wishes to obtained smoothed

paths in PL setting, it is possible to perform the backwards smoothing afterwards the

algorithm has been run, see Carvalho et al. (2010a) for details on smoothing. As seen,

the filtered median log volatilities and 95% credible intervals are almost identical for

both algorithms.

As mentioned in the Introduction, the predictive distribution of the returns (or their

log square transformation) is of major interest. Figure 4 draws posterior predictive dis-

tributions for each of the time cuts for MCMC and PL. As seen from the plot, there is

very little MC variability among the PL runs and the posterior predictives are identical

to those produced by the MCMC. The figure presents such posteriors only for five se-

lected time cuts, however, for PL there are 500 such posterior predictive distributions
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readily available. On the other hand, as mentioned before, the MCMC has to be re-

run each time a new observation arrives, resulting into prohitively large computational

burden if one wants to produce online type inference.

[Figure 3 about here.]

[Figure 4 about here.]

Model comparison. To compare the performance of the models, we use the sequential

predictive log Bayes factor (BF). As pointed out in Koop (2003), Bayes factors permit

consistent model comparison even for non-nested models. Also, it contains rewards for

model fit, accounts for coherency between the prior and the information arising from

the data, as well as rewards parsimony. As seen in Kass and Raftery (1995), Bayes factor

between two competing models is defined as

BF12 =
p(D|M1)

p(D|M2)
,

where p(D|Mr) is the marginal likelihood for data D given a modelMr. Then the log

predictive Bayes factor at time t− 1 for data point rt is defined as

log BF12,t =
t

∑
k=1

log p(rk|rk−1,M1)−
t

∑
k=1

log p(rk|rk−1,M2).

The posterior predictive p(rt|rt−1,Mr) for modelMr is obtained as follows:

p(rt|rt−1,Mr) =
∫

p(rt|rt−1,Mr, Θr)π(Θr|rt−1,Mr)dΘr,

where Θr is a set of parameters associated with modelMr. The integral above is not al-

ways analytically tractable and can be either approximated by using the MCMC output,

or is readily available as a by-product in PL scheme. In particular, for each t = 1, . . . , T,

the log predictive densities are calculated as

log p(rt|rt−1) =
1
N

N

∑
i=1

log p(rt|(Θ, ht, kt)
(i)). (9)
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Finally, Figure 5 illustrates the attractiveness of PL: availability of sequential log pre-

dictive likelihoods and Bayes factors, which allow for fast and consistent model com-

parison. The top panel draws the simulated zero mean return process with Normal

errors meanwhile the bottom panel draws the sequential predictive log Bayes factors

(across four independent runs for SPM and PM). Since the true data generating process

is Normal, as expected, the Bayes factors are negative, showing strong support for the

PM. Even though SPM includes PM as a special case, it has much more parameters to

estimate, therefore, Bayes factors are negative since they reward parsimony.

[Figure 5 about here.]

This simulation study demonstrates that the posterior distributions for the param-

eters, filtered volatilities and posterior predictive distribution for the one step ahead

squared log returns are identical for both estimation schemes. Moreover, PL allows for

sequential consistent model comparison, which is prohibitively costly in MCMC setting.

4 Real Data Application

In this section we present a real data application using return time series for two finan-

cial assets, which are the same as in Delatola and Griffin (2011). In particular, we con-

sider the Microsoft company and the SP500 index. The daily prices from Jan/01/2007

till Oct/31/2016 for both assets are obtained from Datastream. The summary of the

descriptive statistics for the de-meaned log returns (in %) can be seen in Table 1. In

order to closer illustrate the ability of the SPM to capture different distributions of the

squared log returns, we split the data into two disjoint periods: a volatile one that in-

cludes the financial crisis (Jan/01/2007 - Nov/01/2010) and a calm one (Jan/01/2013 -

Oct/31/2016), both containing 1000 observations. Figure 6 draws the daily prices (pan-

els (a) and (b)), the log returns in (%) for the entire period, where the two sub-periods of

interest are in black (panels (c) and (d)) and the densities for the squared log returns for

the two different sub-periods (panels (e) and (f)). Obviously, the densities for the two

sub-periods are very different, expecting calm period returns to be closer to Normal
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distribution. The SPM can capture such different shapes via the infinite mixture of Nor-

mals, meanwhile the purely parametric model will be fitting the exact same distribution

in all four cases.

[Table 1 about here.]

[Figure 6 about here.]

Next, we estimate the data using the SPM and PM specifications. The hyper- param-

eters for the priors are the same as in the simulation study, the offset parameter value is

set to cO = 0.0003. The codes were run for 500k particles each. Figures 7 and 8 present

the estimation results for the Microsoft data set. The figures draw sequential predictive

Bayes factors as compared to the PM specification and the estimated predictive densities

at time T + 1 for the two sub-periods. The PM density corresponds to the mixture of 7

Normals, as an approximation of log χ2
1. Only by looking at the plots, it is obvious that

SPM estimates different densities than the one provided by the fully parametric model.

The sequential predictive log Bayes factors confirm the non-Normally distributed re-

turns, i.e. SPM is strongly preferred to PM for both sub-periods. BFs are much larger for

the volatile data as compared to the calm period, indicating that calm period returns are

closer to Normal.

[Figure 7 about here.]

[Figure 8 about here.]

Figures 9 and 10 present estimation results for the the two sub-periods of the SP500

data set. Same as for the Microsoft data, the SPM is strongly preferred to PM for both

sub-periods. Also, the shapes of the predictive distributions for the log squared returns

differ dramatically from the ones produced by Normally distributed errors.

[Figure 9 about here.]

[Figure 10 about here.]
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To conclude, there is strong evidence that SPM outperforms PM for the selected data

sets, confirming the finding present in previous empirical studies. Consistent sequen-

tial model comparison is possible via the use of the proposed PL algorithm for semi-

parametric SV models.

5 Discussion

This paper designs a sequential estimation procedure, based on PL, for a semi-parametric

SV model. PL is comparable to MCMC and allows for sequential inference, which is im-

portant in high-frequency data context. SMC also produces the picture of the evolution

of parameter learning and provides the predictive likelihoods at each data point as a by-

product. The availability of predictive likelihoods at each time point enables to perform

fast online model comparison using sequential predictive log Bayes factors. Finally, we

present a real data application using two financial time series of the returns for one

index - SP500 and one company - Microsoft. As already confirmed in prior empirical

semi-parametric SV studies, non-parametric errors provide a better model fit for both,

volatile and calm periods.

As noted in the introduction, we use PL to perform sequential Monte Carlo for non-

parametric SV models. Nevertheless, other particle filter alternatives are in order. Com-

parison of these methodologies for the particular models considered in this paper is of

interest and we believe it deserves its own space.

Appendix I: a brief review of particle learning

Define St as an essential state vector to be tracked in time. St is sufficient for the compu-

tation of p(rt+1|St), p(St+1|St, rt+1) and p(Θ|St+1). Usually it contains the filtered states

and the hyper-parameters for the distributions of the model parameters Θ. PL, differ-

ently than other particle methods, relies on a resample-propagate scheme, that can be
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understood by rewriting the Bayes theorem:

p(St|rt+1) ∝ p(rt+1|St)p(St|rt) :

Resample p(St|rt) with weights p(rt+1|St),

p(St+1|rt+1) =
∫

p(St+1|St, rt+1)dP(St|rt+1) :

Propagate St+1 via some propagation rules.

Here rt+1 = (r1, . . . , rt+1). At t = 0 initial values for parameters and states are simu-

lated from their prior distributions: Φ0 of dimension K×N (N is the number of particles

and K is the number of model parameters), Ω0 of dimension 2×N (at time t = 1 there is

only one mixture component, having only two parameters) and h0 of dimension 1× N.

Also, an essential state vector S0 is constructed, containing all the hyper-parameters for

the parameters of the model and mixture components, the volatility states and other in-

formation about the mixture. This vector is of dimension Zt × N, where Zt changes in

time depending on the number of the mixture components. Then, PL iterates through

three steps, for each particle (i), for i = 1, . . . , N:

1. Resample the particles with weights proportional to the posterior predictive den-

sity w(i) ∝ p(rt+1|S
(i)
t ) to obtain resampled particles S̃(i)

t . In other words, we obtain

a new essential state vector S̃t by sampling from the existing essential state vector

St with weights that give more importance to the particles that produce higher

likelihood with respect to the new data point.

2. Propagate the particles S(i)
t+1 ∼ p(St+1|S̃

(i)
t , rt+1). In this step we update all the

elements of the essential state vector through some propagation rules.

3. Learn about the parameters online or off-line by approximating p(Θ|rt+1) as fol-

lows:

p(Θ|rt+1) ≈ 1/N
N

∑
i=1

p(Θ|St+1).

In this step, once the elements of the essential state vector have been propagated,

we use those updated hyper-parameters to sample from the posterior distributions
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of the parameters, obtaining new samples for the parameters Θ. In some cases it is

possible to integrate out the parameter uncertainty in resample step. Then, the pre-

dictive density depends only on the essential state vector p(rt+1|S
(i)
t ). However, in

many other cases it is not possible to integrate out the parameter uncertainty ana-

lytically. Then, in order to calculate the predictive density in the resample step, we

use the sampled parameters, obtained from the hyper-parameters in the essential

state vector: p(rt+1|Θ
(i)
t , S(i)

t ).

Carvalho et al. (2010b) presented a detailed explanation of PL methods for general

mixtures, including DPM models. As before, nt,j is a number of observations assigned to

the jth mixture component at time t and kt is an allocation variable that indicates which

mixture component the observation belongs to. We can augment the essential state vec-

tor St by including nt,j and kt. Then density estimation by using a infinite location-scale

mixture of Normals via PL can be carried out by iterating through the following two

steps, for each particle i:

1. Resample with weights proportional to the predictive density w(i) ∝ p(rt+1|S
(i)
t )

to obtain resampled particles S̃(i)
t ;

2. Propagate allocation variable k(i)t+1 ∼ p(kt+1|S̃
(i)
t , yt+1), and the rest of the sufficient

statistics S(i)
t+1 = p(St+1|S̃

(i)
t , kt+1, yt+1), including n(i)

t+1.

The third step, parameter learning, can be performed off-line since the parameter

uncertainty, as mentioned before, can be integrated out. In various simulation studies,

presented in the papers above, the authors show that PL outperforms other particle

filtering approaches, and is a cost-efficient alternative to MCMC methods.
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Figure 1: Posterior distributions for the parameters for MCMC (black dotted line) and
four runs of PL (grey lines) at time T = 100.
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Figure 2: Posterior median, 2.5 and 97.5 percentile paths for PL and corresponding
MCMC medians with 95% credible intervals at T = {100, 200, 300, 400, 500} for the
model parameters.
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Figure 3: Posterior median, 2.5 and 97.5 percentile paths for PL and corresponding
MCMC medians with 95% credible intervals at T = {100, 200, 300, 400, 500} for the fil-
tered log volatility process.
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Figure 4: Posterior predictive distribution of the squared log returns at T =
{100, 200, 300, 400, 500} for PL (grey lines) and MCMC (black dotted line).

−20 −10 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

T= 100

−20 −10 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

T= 200

−20 −10 0 5
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

T= 300

−20 −10 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

T= 400

−20 −10 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

T= 500

32



Figure 5: Simulated data (top panel) and sequential predictive log Bayes factor for SPM
vs PM (bottom panel).
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Figure 6: Daily prices, log-returns (in %) and densities fort the log-squared returns for
two sub-periods for Microsoft & SP500 data.
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Figure 7: Sequential log predictive Bayes factors and estimated densities for the log-
squared error term for SPM, as compared to the PM for Microsoft data for the fist period.
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Figure 8: Sequential log predictive Bayes factors and estimated densities for the log-
squared error term for SPM, as compared to the PM for Microsoft data for the second
period.
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Figure 9: Sequential log predictive Bayes factors and estimated densities for the log-
squared error term for SPM, as compared to the PM for SP500 data for the first period.
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Figure 10: Sequential log predictive Bayes factors and estimated densities for the log-
squared error term for SPM, as compared to the PM for SP500 data for the second period.
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Table 1: Descriptive statistics for Microsoft and SP500 data.

Microsoft SP500
Mean 0.0000 0.0000

Median -0.0271 0.0129
St.dev. 1.7581 1.3051

Skewness 0.1926 -0.3273
Kurtosis 12.7410 13.2423
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